A tropical haze band in Titan's stratosphere
Icarus 207:1 (2010) 485-490
Abstract:
Inspection of near-infrared images from Cassini's Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer have revealed a new feature in Titan's haze structure: a narrow band of increased scattering by haze south of the equator. The band seems to indicate a region of very limited mixing in the lower stratosphere, which causes haze particles to be trapped there. This could explain the sharp separation between the two hemispheres, known as the north-south asymmetry, seen in images. The separation of the two hemispheres can also be seen in the stratosphere above 150 km using infrared spectra measured by Cassini's Composite Infrared Spectrometer. Titan's behaviour in the lower tropical stratosphere is remarkably similar to that of the Earth's tropical stratosphere, which hints at possible common dynamical processes. © 2009 Elsevier Inc. All rights reserved.The climatology of the middle atmosphere in a vertically extended version of the met office's climate model. Part I: Mean state
Journal of the Atmospheric Sciences 67:5 (2010) 1509-1525
Abstract:
The climatology of a stratosphere-resolving version of the Met Office's climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations-the tropical "tape recorder"-is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasibiennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small. © 2010 American Meteorological Society.Observation of muon intensity variations by season with the MINOS far detector
Physical Review D - Particles, Fields, Gravitation and Cosmology 81:1 (2010)
Abstract:
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67×106 cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, αT, relating changes in the muon rate to changes in atmospheric temperature was found to be αT=0.873±0. 009(stat)±0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to αT due to the different masses and lifetimes. This allows the measured value of αT to be interpreted as a measurement of the K/π ratio for Ep 7TeV of 0.12-0.05+0.07, consistent with the expectation from collider experiments. © 2010 The American Physical Society.Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes
Journal of Geophysical Research Atmospheres 115:15 (2010)
Abstract:
This paper describes the impact of changing the current imposed ozone climatology upon the tropical Quasi-Biennial Oscillation (QBO) in a high top climate configuration of the Met Office U.K. general circulation model. The aim is to help distinguish between QBO changes in chemistry climate models that result from temperature-ozone feedbacks and those that might be forced by differences in climatology between previously fixed and newly interactive ozone distributions. Different representations of zonal mean ozone climatology under present-day conditions are taken to represent the level of change expected between acceptable model realizations of the global ozone distribution and thus indicate whether more detailed investigation of such climatology issues might be required when assessing ozone feedbacks. Tropical stratospheric ozone concentrations are enhanced relative to the control climatology between 20-30 km, reduced from 30-40 km and enhanced above, impacting the model profile of clear-sky radiative heating, in particular warming the tropical stratosphere between 15-35 km. The outcome is consistent with a localized equilibrium response in the tropical stratosphere that generates increased upwelling between 100 and 4 hPa, sufficient to account for a 12 month increase of modeled mean QBO period. This response has implications for analysis of the tropical circulation in models with interactive ozone chemistry because it highlights the possibility that plausible changes in the ozone climatology could have a sizable impact upon the tropical upwelling and QBO period that ought to be distinguished from other dynamical responses such as ozone-temperature feedbacks. Copyright 2010 by the American Geophysical Union.High Resolution Dynamics Limb Sounder measurements of gravity wave activity in the 2006 Arctic stratosphere
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 115 (2010) ARTN D02105