Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Scott Osprey FRMetS

Senior NCAS Research Scientist

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Scott.Osprey@physics.ox.ac.uk
Telephone: 01865 (2)82434,01865 (2)72923
Atmospheric Physics Clarendon Laboratory, room 111
National Centre for Atmospheric Science
SPARC QBOi
Explaining & Predicting Earth System Change
  • About
  • Publications

Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution

Journal of Geophysical Research Atmospheres 118:10 (2013) 3956-3971

Authors:

JA Anstey, P Davini, LJ Gray, TJ Woollings, N Butchart, C Cagnazzo, B Christiansen, SC Hardiman, SM Osprey, S Yang

Abstract:

Blocking of the tropospheric jet stream during Northern Hemisphere winter (December-January-February) is examined in a multi-model ensemble of coupled atmosphere-ocean general circulation models (GCMs) obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The CMIP5 models exhibit large biases in blocking frequency and related biases in tropospheric jet latitude, similar to earlier generations of GCMs. Underestimated blocking at high latitudes, especially over Europe, is common. In general, model biases decrease as model resolution increases. Increased blocking frequency at high latitudes in both the Atlantic and Pacific basins, as well as more realistic variability of Atlantic jet latitude, are associated with increased vertical resolution in the mid-troposphere to lowermost stratosphere. Finer horizontal resolution is associated with higher blocking frequency at all latitudes in the Atlantic basin but appears to have no systematic impact on blocking near Greenland or in the Pacific basin. Results from the CMIP5 analysis are corroborated by additional controlled experiments using selected GCMs. Key PointsCMIP5 models have large blocking biases and associated jet biasesIncreased spatial resolution is associated with reduced blocking and jet biasesVertical and horizontal resolution give blocking changes in different regions ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Stratospheric variability in 20th Century CMIP5 simulations of the Met Office climate model: High-top versus low-top

J CLIM 26 (2013) 5

Authors:

SM Osprey, LJ Gray, SC Hardiman, N Butchart, T Hinton
More details from the publisher

The impact of stratospheric resolution on the detectability of climate change signals in the free atmosphere

GEOPHYSICAL RESEARCH LETTERS 40:5 (2013) 937-942

Authors:

DM Mitchell, PA Stott, LJ Gray, MR Allen, FC Lott, N Butchart, SC Hardiman, SM Osprey
More details from the publisher

Observations of an inertial peak in the intrinsic wind spectrum shifted by rotation in the antarctic vortex

Journal of the Atmospheric Sciences 69:12 (2012) 3812-3812

Authors:

DM Mitchell, SM Osprey, JGRAY Lesley, N Butchart, CH Steven, AJ Charlton-perez, W Peter

Abstract:

There was a numerical error in the abstract of Mitchell et al. (2012). In the fourth sentence of the abstract the number should be 7 events per decade, not 0.7. The full sentence should read, Analysis of the standard stratospheric zonal mean wind diagnostic shows no significan increase over the twenty-first century in the number of major sudden stratospheric warmings (SSWs) from its historical value of 7 events per decade, although the monthly distribution of SSWs does vary, with events becoming more evenly dispersed through thwinter.
More details from the publisher

Influence of the stratosphere on climate projections with HadGEM2

(2012)

Authors:

N Butchart, S Hardiman, B Collins, T Hinton, A Scaife, J Anstey, L Gray, S Osprey

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet