Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Scott Osprey FRMetS

Senior NCAS Research Scientist

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Scott.Osprey@physics.ox.ac.uk
Telephone: 01865 (2)82434,01865 (2)72923
Atmospheric Physics Clarendon Laboratory, room 111
National Centre for Atmospheric Science
SPARC QBOi
Explaining & Predicting Earth System Change
  • About
  • Publications

A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns

Journal of Geophysical Research Atmospheres 118:24 (2013) 13-420

Authors:

LJ Gray, AA Scaife, DM Mitchell, S Osprey, S Ineson, S Hardiman, N Butchart, J Knight, R Sutton, K Kodera

Abstract:

The surface response to 11 year solar cycle variations is investigated by analyzing the long-term mean sea level pressure and sea surface temperature observations for the period 1870-2010. The analysis reveals a statistically significant 11 year solar signal over Europe, and the North Atlantic provided that the data are lagged by a few years. The delayed signal resembles the positive phase of the North Atlantic Oscillation (NAO) following a solar maximum. The corresponding sea surface temperature response is consistent with this. A similar analysis is performed on long-term climate simulations from a coupled ocean-atmosphere version of the Hadley Centre model that has an extended upper lid so that influences of solar variability via the stratosphere are well resolved. The model reproduces the positive NAO signal over the Atlantic/European sector, but the lag of the surface response is not well reproduced. Possible mechanisms for the lagged nature of the observed response are discussed. Key Points 11-year solar signal detected over N. Atlantic/Europe Signal is evident if data are lagged by ~3 years HadGEM climate model simulates signal but not the lag ©2013. The Authors.
More details from the publisher

Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology

Journal of Geophysical Research Atmospheres 118:19 (2013) 10-993

Authors:

CJ Wright, SM Osprey, JC Gille

Abstract:

Three years of gravity wave observations from the High Resolution Dynamics Limb Sounder instrument on NASA's Aura satellite are examined. We produce estimates of the global distribution of gravity wave momentum flux as a function of individual observed wave packets. The observed distribution at the 25 km altitude level is dominated by the small proportion of wave packets with momentum fluxes greater than ∼0.5 mPa. Depending on latitude and season, these wave packets only comprise ∼7-25% of observations, but are shown to be almost entirely responsible for the morphology of the observed global momentum flux distribution. Large-amplitude wave packets are found to be more important over orographic regions than over flat ocean regions, and to be especially high in regions poleward of 40°S during austral winter. The momentum flux carried by the largest packets relative to the distribution mean is observed to decrease with height over orographic wave generation regions, but to increase with height at tropical latitudes; the mesospheric intermittency resulting is broadly equivalent in both cases. Consistent with previous studies, waves in the top 10% of the extratropical distribution are observed to carry momentum fluxes more than twice the mean and waves in the top 1% more than 10× the mean, and the Gini coefficient is found to characterize the observed distributions well. These results have significant implications for gravity wave modeling. Key Points Observed GW distribution dominated by wave packets with MF>0.5 mPa Intermittency higher over orography Gini coefficient confirmed as a good metric for wave intermittency ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Report on the 3rd SPARC DynVar Workshop on Modelling the Dynamics and Variability of the Stratosphere-Troposphere System

(2013) 41

Authors:

E Manzini, A Charlton-Perez, E Gerber, T Birner, A Butler, S Hardiman, A Karpechko, F Lott, A Maycock, SM Osprey, O Tripathi, T Shaw, M Sigmond

Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution

Journal of Geophysical Research Atmospheres 118:10 (2013) 3956-3971

Authors:

JA Anstey, P Davini, LJ Gray, TJ Woollings, N Butchart, C Cagnazzo, B Christiansen, SC Hardiman, SM Osprey, S Yang

Abstract:

Blocking of the tropospheric jet stream during Northern Hemisphere winter (December-January-February) is examined in a multi-model ensemble of coupled atmosphere-ocean general circulation models (GCMs) obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The CMIP5 models exhibit large biases in blocking frequency and related biases in tropospheric jet latitude, similar to earlier generations of GCMs. Underestimated blocking at high latitudes, especially over Europe, is common. In general, model biases decrease as model resolution increases. Increased blocking frequency at high latitudes in both the Atlantic and Pacific basins, as well as more realistic variability of Atlantic jet latitude, are associated with increased vertical resolution in the mid-troposphere to lowermost stratosphere. Finer horizontal resolution is associated with higher blocking frequency at all latitudes in the Atlantic basin but appears to have no systematic impact on blocking near Greenland or in the Pacific basin. Results from the CMIP5 analysis are corroborated by additional controlled experiments using selected GCMs. Key PointsCMIP5 models have large blocking biases and associated jet biasesIncreased spatial resolution is associated with reduced blocking and jet biasesVertical and horizontal resolution give blocking changes in different regions ©2013. American Geophysical Union. All Rights Reserved.
More details from the publisher
More details

Stratospheric variability in 20th Century CMIP5 simulations of the Met Office climate model: High-top versus low-top

J CLIM 26 (2013) 5

Authors:

SM Osprey, LJ Gray, SC Hardiman, N Butchart, T Hinton
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet