Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene

Physical Review X American Physical Society

Authors:

Yves H Kwan, Glenn Wagner, Tomohiro Soejima, Michael P Zaletel, Steven H Simon, Siddharth A Parameswaran, Nick Bultinck

Abstract:

We study magic angle graphene in the presence of both strain and particle-hole symmetry breaking due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction and substrate potentials, and explore a comprehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the 'incommensurate Kekul\'e spiral' (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moir\'e translation symmetries, but preserves a modified translation symmetry $\hat{T}'$ -- which simultaneously shifts the spatial coordinates and rotates the $U(1)$ angle which characterizes the spontaneous inter-valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Odd Fracton Theories, Proximate Orders, and Parton Constructions

Physical Review B: Condensed Matter and Materials Physics American Physical Society

Authors:

Michael Pretko, Sa Parameswaran, Michael Hermele

Abstract:

The Lieb-Schultz-Mattis (LSM) theorem implies that gapped phases of matter must satisfy non-trivial conditions on their low-energy properties when a combination of lattice translation and $U(1)$ symmetry are imposed. We describe a framework to characterize the action of symmetry on fractons and other sub-dimensional fractional excitations, and use this together with the LSM theorem to establish that X-cube fracton order can occur only at integer or half-odd-integer filling. Using explicit parton constructions, we demonstrate that "odd" versions of X-cube fracton order can occur in systems at half-odd-integer filling, generalizing the notion of odd $Z_2$ gauge theory to the fracton setting. At half-odd-integer filling, exiting the X-cube phase by condensing fractional quasiparticles leads to symmetry-breaking, thereby allowing us to identify a class of conventional ordered phases proximate to phases with fracton order. We leverage a dual description of one of these ordered phases to show that its topological defects naturally have restricted mobility. Condensing pairs of these defects then leads to a fracton phase, whose excitations inherit these mobility restrictions.
More details from the publisher
Details from ORA
More details
Details from ArXiV

One-Dimensional Luttinger Liquids in a Two-Dimensional Moiré Lattice

Nature Nature Research

Authors:

Pengjie Wang, Guo Yu, Yves H Kwan, Yanyu Jia, Shiming Lei, Sebastian Klemenz, F Alexandre Cevallos, Ratnadwip Singha, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Shivaji L SONDHI, Robert J Cava, Leslie M Schoop, Siddharth ASHOK PARAMESWARAN, Sanfeng Wu

Abstract:

The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions (2D), especially in models of closely packed arrays of 1D quantum wires, each being described as a LL. Such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, quantum Hall states, topological phases, and quantum spin liquids. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moir\'e superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moir\'e pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the interlayer twist angle. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviors, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
More details from the publisher
Details from ORA
Details from ArXiV

Quantum oscillations in the zeroth Landau Level and the serpentine Landau fan

Physical Review Letters American Physical Society

Authors:

T Devakul, Yves H Kwan, SL Sondhi, SA Parameswaran

Abstract:

We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These `zero Landau level' quantum oscillations (ZQOs) appear in the nodal limit where the zero-field Fermi volume vanishes, and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that across the entire Landau fan, pairs of opposite-parity Landau levels are intertwined in a `serpentine' manner. We propose 2D surfaces of topological crystalline insulators as natural settings for ZQOs, and comment on implications for anomaly physics in 3D nodal semimetals.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Signatures of fractional statistics in nonlinear pump-probe spectroscopy

Physical Review Letters American Physical Society

Authors:

Max McGinley, Michele Fava, Sa Parameswaran
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet