Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Fractional Chern Insulators and Competing States in a Twisted MoTe$_2$ Lattice Model

ArXiv 2505.06354 (2025)

Authors:

Yuchi He, SH Simon, SA Parameswaran
Details from ArXiV

Slow measurement-only dynamics of entanglement in Pauli subsystem codes

Physical Review B (condensed matter and materials physics) American Physical Society 111 (2025) 144308

Authors:

Benedikt Placke, Siddharth Ashok Parameswaran

Abstract:

We study the non-unitary dynamics of a class of quantum circuits based on stochastically measuring check operators of subsystem quantum error-correcting codes, such as the Bacon-Shor code and its various generalizations. Our focus is on how properties of the underlying code are imprinted onto the measurement-only dynamics. We find that in a large class of codes with nonlocal stabilizer generators, at late times there is generically a nonlocal contribution to the subsystem entanglement entropy which scales with the subsystem size. The nonlocal stabilizer generators can also induce slow dynamics, since depending on the rate of competing measurements the associated degrees of freedom can take exponentially long (in system size) to purify (disentangle from the environment when starting from a mixed state) and to scramble (become entangled with the rest of the system when starting from a product state). Concretely, we consider circuits for which the nonlocal stabilizer generators of the underlying subsystem code take the form of subsystem symmetries. We present a systematic study of the phase diagrams and relevant time scales in two and three spatial dimensions for both Calderbank-Shor-Steane (CSS) and non-CSS codes, focusing in particular on the link between slow measurement-only dynamics and the geometry of the subsystem symmetry. A key finding of our work is that slowly purifying or scrambling degrees of freedom appear to emerge only in codes whose subsystem symmetries are nonlocally generated, a strict subset of those whose symmetries are simply nonlocal. We comment on the link between our results on subsystem codes and the phenomenon of Hilbert-space fragmentation in light of their shared algebraic structure.
More details from the publisher
Details from ORA

Solvable Quantum Circuits in Tree+1 Dimensions

(2025)

Authors:

Oliver Breach, Benedikt Placke, Pieter W Claeys, SA Parameswaran
Details from ArXiV

Minimal Hubbard models of maximal Hilbert Space fragmentation

Physical Review Letters American Physical Society 134:1 (2025) 010411

Authors:

Yves Kwan, Patrick Wilhelm, Sounak Biswas, Siddharth Ashok Parameswaran

Abstract:

We show that Hubbard models with nearest-neighbor hopping and a nearest-neighbor hardcore constraint exhibit β€œmaximal” Hilbert space fragmentation in many lattices of arbitrary dimension 𝑑. Focusing on the 𝑑 =1 rhombus chain and the 𝑑 =2 Lieb lattice, we demonstrate that the fragmentation is strong for all fillings in the thermodynamic limit, and explicitly construct all emergent integrals of motion, which include an extensive set of higher-form symmetries. Blockades consisting of frozen particles partition the system in real space, leading to anomalous dynamics. Our results are potentially relevant to optical lattices of dipolar and Rydberg-dressed atoms.
More details from the publisher
Details from ORA
More details
More details

Superconductivity from repulsive interactions in Bernal-stacked bilayer graphene

Physical Review B American Physical Society 110:21 (2024) 214517

Authors:

Glenn Wagner, Yves Kwan, Nick Bultinck, Steven Simon, Siddharth Ashok Parameswaran

Abstract:

A striking series of experiments have observed superconductivity in Bernal-stacked bilayer graphene (BBG) when the energy bands are flattened by applying an electrical displacement field. Intriguingly, superconductivity manifests only at nonzero magnetic fields, or when spin-orbit coupling is induced in BBG by coupling to a substrate. We present detailed functional renormalization group and random-phase approximation calculations that provide a unified explanation for the superconducting mechanism in both cases. Both calculations yield a purely electronic 𝑝-wave instability of the Kohn-Luttinger type. The latter can be enhanced either by magnetic fields or Ising spin-orbit coupling, naturally explaining the behavior seen in experiments.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

Β© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet