Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Raymond Pierrehumbert FRS

Professor of Planetary Physics

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planetary Climate Dynamics
  • Solar system
raymond.pierrehumbert@physics.ox.ac.uk
Telephone: 01865 (2)72892
Atmospheric Physics Clarendon Laboratory, room Room 211
Site for my textbook, Principles of Planetary Climate
Pierrehumbert Group Site
  • About
  • Publications

High levels of atmospheric carbon dioxide necessary for the termination of global glaciation

Nature Springer Nature 429:6992 (2004) 646-649
More details from the publisher
More details
More details

Hydrothermal plume dynamics on Europa: Implications for chaos formation

Journal of Geophysical Research: Planets American Geophysical Union (AGU) 109:E3 (2004) 2003JE002073

Authors:

Jason C Goodman, Geoffrey C Collins, John Marshall, Raymond T Pierrehumbert

Abstract:

Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa's rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa's ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa‐like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m2) are too weak to allow complete melt‐through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow.
More details from the publisher

Hydrothermal plume dynamics on Europa: Implications for chaos formation

Journal of Geophysical Research American Geophysical Union (AGU) 109:E3 (2004)

Authors:

Jason C Goodman, Geoffrey C Collins, John Marshall, Raymond T Pierrehumbert
More details from the publisher

Glacial flow of floating marine ice in “Snowball Earth”

Journal of Geophysical Research: Oceans American Geophysical Union (AGU) 108:C10 (2003) 2002JC001471

Authors:

Jason C Goodman, Raymond T Pierrehumbert

Abstract:

Simulations of frigid Neoproterozoic climates have not considered the tendency of thick layers of floating marine ice to deform and spread laterally. We have constructed a simple model of the production and flow of marine ice on a planetary scale, and determined ice thickness and flow in two situations: when the ocean is globally ice‐covered (“hard snowball”) and when the tropical waters remain open (“soft snowball”). In both cases, ice flow strongly affects the distribution of marine ice. Flowing ice probably carries enough latent heat and freshwater to significantly affect the transition into a Snowball Earth climate. We speculate that flowing marine ice, rather than continental ice sheets, may be the erosive agent that created some Neoproterozoic glacial deposits.
More details from the publisher
More details

Erratum: Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains - From non-self-similar probability distribution functions to self-similar eigenmodes (Physical Review E (2002) 66 (056302))

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 68:1 2 (2003) 199031

Authors:

J Sukhatme, RT Pierrehumbert

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet