Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Adam Povey FRMetSoc FHEA

Visitor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Earth Observation Data Group
Adam.Povey@physics.ox.ac.uk
Robert Hooke Building, room S46
  • About
  • Teaching
  • Publications

Characterization of dust aerosols from ALADIN and CALIOP measurements

Atmospheric Measurement Techniques European Geosciences Union 17:8 (2024) 2521-2538

Authors:

Rui Song, Adam Povey, Roy Grainger

Abstract:

Atmospheric aerosols have pronounced effects on climate at both regional and global scales, but the magnitude of these effects is subject to considerable uncertainties. A major contributor to these uncertainties is an incomplete understanding of the vertical structure of aerosol, largely due to observational limitations. Spaceborne lidars can directly observe the vertical distribution of aerosols globally and are increasingly used in atmospheric aerosol remote sensing. As the first spaceborne high-spectral-resolution lidar (HSRL), the Atmospheric LAser Doppler INstrument (ALADIN) on board the Aeolus satellite was operational from 2018 to 2023. ALADIN data can be used to estimate aerosol extinction and co-polar backscatter coefficients separately without an assumption of the lidar ratio. This study assesses the performance of ALADIN's aerosol retrieval capabilities by comparing them with Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) measurements. A statistical analysis of retrievals from both instruments during the June 2020 Saharan dust event indicates consistency between the observed backscatter and extinction coefficients. During this extreme dust event, CALIOP-derived aerosol optical depth (AOD) exhibited large discrepancies with Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua measurements. Using collocated ALADIN observations to revise the dust lidar ratio to 63.5 sr, AODs retrieved from CALIOP are increased by 46 %, improving the comparison with MODIS data. The combination of measurements from ALADIN and CALIOP can enhance the tracking of aerosols' vertical transport. This study demonstrates the potential for spaceborne HSRL to retrieve aerosol optical properties. It highlights the benefits of spaceborne HSRL in directly obtaining the lidar ratio, significantly reducing uncertainties in extinction retrievals.
More details from the publisher
Details from ORA
More details

Characterization of dust aerosols from ALADIN and CALIOP measurements

Atmospheric Measurement Techniques Copernicus Publications 17:8 (2024) 2521-2538

Authors:

Rui Song, Adam Povey, Roy G Grainger

Abstract:

Atmospheric aerosols have pronounced effects on climate at both regional and global scales, but the magnitude of these effects is subject to considerable uncertainties. A major contributor to these uncertainties is an incomplete understanding of the vertical structure of aerosol, largely due to observational limitations. Spaceborne lidars can directly observe the vertical distribution of aerosols globally and are increasingly used in atmospheric aerosol remote sensing. As the first spaceborne high-spectral-resolution lidar (HSRL), the Atmospheric LAser Doppler INstrument (ALADIN) on board the Aeolus satellite was operational from 2018 to 2023. ALADIN data can be used to estimate aerosol extinction and co-polar backscatter coefficients separately without an assumption of the lidar ratio. This study assesses the performance of ALADIN's aerosol retrieval capabilities by comparing them with Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) measurements. A statistical analysis of retrievals from both instruments during the June 2020 Saharan dust event indicates consistency between the observed backscatter and extinction coefficients. During this extreme dust event, CALIOP-derived aerosol optical depth (AOD) exhibited large discrepancies with Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua measurements. Using collocated ALADIN observations to revise the dust lidar ratio to 63.5sr, AODs retrieved from CALIOP are increased by 46%, improving the comparison with MODIS data. The combination of measurements from ALADIN and CALIOP can enhance the tracking of aerosols' vertical transport. This study demonstrates the potential for spaceborne HSRL to retrieve aerosol optical properties. It highlights the benefits of spaceborne HSRL in directly obtaining the lidar ratio, significantly reducing uncertainties in extinction retrievals.
More details from the publisher

Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions

Atmospheric Chemistry and Physics European Geosciences Union 23:7 (2023) 4115-4122

Authors:

Edward Gryspeerdt, Adam C Povey, Roy Gordon Grainger

Abstract:

Atmospheric aerosols and their impact on cloud properties remain the largest uncertainty in the human forcing of the climate system. By increasing the concentration of cloud droplets (Nd), aerosols reduce droplet size and increase the reflectivity of clouds (a negative radiative forcing). Central to this climate impact is the susceptibility of cloud droplet number to aerosol (β), the diversity of which explains much of the variation in the radiative forcing from aerosol–cloud interactions (RFaci) in global climate models. This has made measuring β a key target for developing observational constraints of the aerosol forcing.

While the aerosol burden of the clean, pre-industrial atmosphere has been demonstrated as a key uncertainty for the aerosol forcing, here we show that the behaviour of clouds under these clean conditions is of equal importance for understanding the spread in radiative forcing estimates between models and observations. This means that the uncertainty in the aerosol impact on clouds is, counterintuitively, driven by situations with little aerosol. Discarding clean conditions produces a close agreement between different model and observational estimates of the cloud response to aerosol but does not provide a strong constraint on the RFaci. This makes constraining aerosol behaviour in clean conditions an important goal for future observational studies.

More details from the publisher
Details from ORA

Uncertainty in aerosol-cloud radiative forcing is driven by clean conditions

Atmospheric Chemistry and Physics European Geosciences Union (2023)

Authors:

Edward Gryspeerdt, Adam Povey, Roy Grainger, Otto Hasekamp, Christina Hsu, Jane Mulcahy, Andrew Sayer, Armin Sorooshian
More details from the publisher
More details

Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption

Atmospheric Measurement Techniques European Geosciences Union 15:20 (2022) 5985-6010

Authors:

Andrew T Prata, Roy G Grainger, Isabelle A Taylor, Adam C Povey, Simon R Proud, Caroline A Poulsen

Abstract:

Uncertainty-bounded satellite retrievals of volcanic ash cloud properties such as ash cloud-top height, effective radius, optical depth and mass loading are needed for the robust quantitative assessment required to warn aviation of potential hazards. Moreover, there is an imperative to improve quantitative ash cloud estimation due to the planned move towards quantitative ash concentration forecasts by the Volcanic Ash Advisory Centers. Here we apply the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm to Advanced Himawari Imager (AHI) measurements of the ash clouds produced by the June 2019 Raikoke (Russia) eruption. The ORAC algorithm uses an optimal estimation technique to consolidate a priori information, satellite measurements and associated uncertainties into uncertainty-bounded estimates of the desired state variables. Using ORAC, we demonstrate several improvements in thermal infrared volcanic ash retrievals applied to broadband imagers. These include an improved treatment of measurement noise, accounting for multi-layer cloud scenarios, distinguishing between heights in the troposphere and stratosphere, and the retrieval of a wider range of effective radii sizes than existing techniques by exploiting information from the 10.4 µm channel. Our results indicate that 0.73 ± 0.40 Tg of very fine ash (radius ≤ 15 µm) was injected into the atmosphere during the main eruptive period from 21 June 18:00 UTC to 22 June 10:00 UTC. The total mass of very fine ash decreased from 0.73 to 0.10 Tg over ∼ 48 h, with an e-folding time of 20 h. We estimate a distal fine ash mass fraction of 0.73 % ± 0.62 % based on the total mass of very fine ash retrieved and the ORAC-derived height–time series. Several distinct ash layers were revealed by the ORAC height retrievals. Generally, ash in the troposphere was composed of larger particles than ash present in the stratosphere. We also find that median ash cloud concentrations fall below peak ash concentration safety limits (< 4 mg m−3) 11–16 h after the eruption begins, if typical ash cloud geometric thicknesses are assumed. The ORAC height retrievals for the near-source plume showed good agreement with GOES-17 side-view height data (R=0.84; bias = −0.75 km); however, a larger negative bias was found when comparing ORAC height retrievals for distal ash clouds against Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) measurements (R=0.67; bias = −2.67 km). The dataset generated here provides uncertainties at the pixel level for all retrieved variables and could potentially be used for dispersion model validation or be implemented in data assimilation schemes. Future work should focus on improving ash detection, improving height estimation in the stratosphere and exploring the added benefit of visible channels for retrieving effective radius and optical depth in opaque regions of nascent ash plumes.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet