A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing
Atmospheric Measurement Techniques European Geosciences Union 13 (2020) 373-404
Abstract:
Recent years have seen the increasing inclusion of per-retrieval prognostic (predictive) uncertainty estimates within satellite aerosol optical depth (AOD) data sets, providing users with quantitative tools to assist in the optimal use of these data. Prognostic estimates contrast with diagnostic (i.e. relative to some external truth) ones, which are typically obtained using sensitivity and/or validation analyses. Up to now, however, the quality of these uncertainty estimates has not been routinely assessed. This study presents a review of existing prognostic and diagnostic approaches for quantifying uncertainty in satellite AOD retrievals, and it presents a general framework to evaluate them based on the expected statistical properties of ensembles of estimated uncertainties and actual retrieval errors. It is hoped that this framework will be adopted as a complement to existing AOD validation exercises; it is not restricted to AOD and can in principle be applied to other quantities for which a reference validation data set is available. This framework is then applied to assess the uncertainties provided by several satellite data sets (seven over land, five over water), which draw on methods from the empirical to sensitivity analyses to formal error propagation, at 12 Aerosol Robotic Network (AERONET) sites. The AERONET sites are divided into those for which it is expected that the techniques will perform well and those for which some complexity about the site may provide a more severe test. Overall, all techniques show some skill in that larger estimated uncertainties are generally associated with larger observed errors, although they are sometimes poorly calibrated (i.e. too small or too large in magnitude). No technique uniformly performs best. For powerful formal uncertainty propagation approaches such as optimal estimation, the results illustrate some of the difficulties in appropriate population of the covariance matrices required by the technique. When the data sets are confronted by a situation strongly counter to the retrieval forward model (e.g. potentially mixed land–water surfaces or aerosol optical properties outside the family of assumptions), some algorithms fail to provide a retrieval, while others do but with a quantitatively unreliable uncertainty estimate. The discussion suggests paths forward for the refinement of these techniques.Known and unknown unknowns: Uncertainty estimation in satellite remote sensing
Atmospheric Measurement Techniques European Geosciences Union 8:11 (2015) 4699-4718
Abstract:
This paper discusses a best-practice representation of uncertainty in satellite remote sensing data. An estimate of uncertainty is necessary to make appropriate use of the information conveyed by a measurement. Traditional error propagation quantifies the uncertainty in a measurement due to well-understood perturbations in a measurement and in auxiliary data - known, quantified "unknowns". The under-constrained nature of most satellite remote sensing observations requires the use of various approximations and assumptions that produce non-linear systematic errors that are not readily assessed - known, unquantifiable "unknowns". Additional errors result from the inability to resolve all scales of variation in the measured quantity - unknown "unknowns". The latter two categories of error are dominant in under-constrained remote sensing retrievals, and the difficulty of their quantification limits the utility of existing uncertainty estimates, degrading confidence in such data. This paper proposes the use of ensemble techniques to present multiple self-consistent realisations of a data set as a means of depicting unquantified uncertainties. These are generated using various systems (different algorithms or forward models) believed to be appropriate to the conditions observed. Benefiting from the experience of the climate modelling community, an ensemble provides a user with a more complete representation of the uncertainty as understood by the data producer and greater freedom to consider different realisations of the data.Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation
(2013)
Abstract:
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
Geoscientific Model Development Copernicus Publications 13:12 (2020) 6383-6423
Abstract:
We document and evaluate the aerosol schemes as implemented in the physical and Earth system models, the Global Coupled 3.1 configuration of the Hadley Centre Global Environment Model version 3 (HadGEM3-GC3.1) and the United Kingdom Earth System Model (UKESM1), which are contributing to the sixth Coupled Model Intercomparison Project (CMIP6). The simulation of aerosols in the present-day period of the historical ensemble of these models is evaluated against a range of observations. Updates to the aerosol microphysics scheme are documented as well as differences in the aerosol representation between the physical and Earth system configurations. The additional Earth system interactions included in UKESM1 lead to differences in the emissions of natural aerosol sources such as dimethyl sulfide, mineral dust and organic aerosol and subsequent evolution of these species in the model. UKESM1 also includes a stratospheric–tropospheric chemistry scheme which is fully coupled to the aerosol scheme, while GC3.1 employs a simplified aerosol chemistry mechanism driven by prescribed monthly climatologies of the relevant oxidants. Overall, the simulated speciated aerosol mass concentrations compare reasonably well with observations. Both models capture the negative trend in sulfate aerosol concentrations over Europe and the eastern United States of America (US) although the models tend to underestimate sulfate concentrations in both regions. Interactive emissions of biogenic volatile organic compounds in UKESM1 lead to an improved agreement of organic aerosol over the US. Simulated dust burdens are similar in both models despite a 2-fold difference in dust emissions. Aerosol optical depth is biased low in dust source and outflow regions but performs well in other regions compared to a number of satellite and ground-based retrievals of aerosol optical depth. Simulated aerosol number concentrations are generally within a factor of 2 of the observations, with both models tending to overestimate number concentrations over remote ocean regions, apart from at high latitudes, and underestimate over Northern Hemisphere continents. Finally, a new primary marine organic aerosol source is implemented in UKESM1 for the first time. The impact of this new aerosol source is evaluated. Over the pristine Southern Ocean, it is found to improve the seasonal cycle of organic aerosol mass and cloud droplet number concentrations relative to GC3.1 although underestimations in cloud droplet number concentrations remain. This paper provides a useful characterisation of the aerosol climatology in both models and will facilitate understanding in the numerous aerosol–climate interaction studies that will be conducted as part of CMIP6 and beyond.A Unified Framework for Trend Uncertainty Assessment in Climate Data Record: Application to the Analysis of the Global Mean Sea Level Measured by Satellite Altimetry
Copernicus Publications (2025)