Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Adam Povey FRMetSoc FHEA

Visitor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Earth Observation Data Group
Adam.Povey@physics.ox.ac.uk
Robert Hooke Building, room S46
  • About
  • Teaching
  • Publications

A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing

Atmospheric Measurement Techniques European Geosciences Union 13 (2020) 373-404

Authors:

AM Sayer, Adam Povey, Y Govaerts, P Kolmonen, A Lipponen, M Luffarelli, T Mielonen, F Patadia, T Popp, K Stebel, ML Witek

Abstract:

Recent years have seen the increasing inclusion of per-retrieval prognostic (predictive) uncertainty estimates within satellite aerosol optical depth (AOD) data sets, providing users with quantitative tools to assist in the optimal use of these data. Prognostic estimates contrast with diagnostic (i.e. relative to some external truth) ones, which are typically obtained using sensitivity and/or validation analyses. Up to now, however, the quality of these uncertainty estimates has not been routinely assessed. This study presents a review of existing prognostic and diagnostic approaches for quantifying uncertainty in satellite AOD retrievals, and it presents a general framework to evaluate them based on the expected statistical properties of ensembles of estimated uncertainties and actual retrieval errors. It is hoped that this framework will be adopted as a complement to existing AOD validation exercises; it is not restricted to AOD and can in principle be applied to other quantities for which a reference validation data set is available. This framework is then applied to assess the uncertainties provided by several satellite data sets (seven over land, five over water), which draw on methods from the empirical to sensitivity analyses to formal error propagation, at 12 Aerosol Robotic Network (AERONET) sites. The AERONET sites are divided into those for which it is expected that the techniques will perform well and those for which some complexity about the site may provide a more severe test. Overall, all techniques show some skill in that larger estimated uncertainties are generally associated with larger observed errors, although they are sometimes poorly calibrated (i.e. too small or too large in magnitude). No technique uniformly performs best. For powerful formal uncertainty propagation approaches such as optimal estimation, the results illustrate some of the difficulties in appropriate population of the covariance matrices required by the technique. When the data sets are confronted by a situation strongly counter to the retrieval forward model (e.g. potentially mixed land–water surfaces or aerosol optical properties outside the family of assumptions), some algorithms fail to provide a retrieval, while others do but with a quantitatively unreliable uncertainty estimate. The discussion suggests paths forward for the refinement of these techniques.
More details from the publisher
Details from ORA
More details

Cloud_cci ATSR-2 and AATSR dataset version 3: a 17-yearclimatology of global cloud and radiation properties

Copernicus Publications 2019 (2019) 1-21

Authors:

Caroline A Poulsen, Gregory R Mcgarragh, Gareth E Thomas, Martin Stengel, Matthew W Christiensen, Adam C Povey, Simon R Proud, Elisa Carboni, Rainer Hollmann, Roy G Grainger
More details from the publisher

A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing

(2019)

Authors:

Andrew M Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C Povey, Kerstin Stebel, Marcin L Witek
More details from the publisher

Towards more representative gridded satellite products

IEEE Geoscience and Remote Sensing Letters IEEE 16:5 (2018) 672-676

Authors:

Adam Povey, Roy Grainger

Abstract:

The most widely used satellite products are averages of data onto a regular spatiotemporal grid, known as Level 3 data. Some atmospheric variables can vary rapidly in response to changing conditions. Over the scales of Level 3 averaging, the combination of observations across different conditions may result in data that is not normally distributed, such that a simple mean is not representative. The problem is illustrated by the distribution of aerosol optical depth from different sensors and algorithms. A simple statistical technique is proposed to better convey the diversity of satellite observations to users whereby a multimodal log-normal distribution is fit to the distribution of data observed within each grid cell. Allowing multiple modes within each cell is shown to improve the agreement between satellite products by highlighting regions of significant variability and isolating systematic differences between instruments.
More details from the publisher
Details from ORA
More details

Finding Ocean States That Are Consistent with Observations from a Perturbed Physics Parameter Ensemble

Journal of Climate American Meteorological Society (2018)

Authors:

S Sparrow, RJ Millar, K Yamazaki, N Massey, Adam Povey, A Bowery, RG Grainger, D Wallom, M Allen

Abstract:

A very large ensemble is used to identify subgrid-scale parameter settings for the HadCM3 model that are capable of best simulating the ocean state over the recent past (1980–2010). A simple particle filtering technique based upon the agreement of basin mean sea surface temperature (SST) and upper 700-m ocean heat content with EN3 observations is applied to an existing perturbed physics ensemble with initial conditions perturbations. A single set of subgrid-scale parameter values was identified from the wide range of initial parameter sets that gave the best agreement with ocean observations for the period studied. The parameter set, different from the standard model parameters, has a transient climate response of 1.68 K. The selected parameter set shows an improved agreement with EN3 decadal-mean SST patterns and the Atlantic meridional overturning circulation (AMOC) at 26°N as measured by the Rapid Climate Change (RAPID) array. Particle filtering techniques as demonstrated here could have a useful role in improving the starting point for traditional model-tuning exercises in coupled climate models.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet