Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Adam Povey FRMetSoc FHEA

Visitor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Earth Observation Data Group
Adam.Povey@physics.ox.ac.uk
Robert Hooke Building, room S46
  • About
  • Teaching
  • Publications

The Radiation Tolerance of Specific Optical Fibers for the LHC Upgrades

Physics Procedia Elsevier 37 (2012) 1630-1643

Authors:

Joshua Abramovitch, B Arviddson, K Dunn, Datao Gong, Todd Huffman, C Issever, M Jones, Cotty Kerridge, James Kierstead, G Kuyt, Chonghan Liu, Tiankuan Liu, A Povey, E Regnier, NC Ryder, Nnadozie Tassie, Tony Weidberg, Annie C Xiang, Jingbo Ye
More details from the publisher
More details

The improvement of lidar analysis through non-linear regression

(2012)

Authors:

AC Povey, RG Grainger, DM Peters, JL Agnew, D Rees

Abstract:

Lidars are ideally placed to investigate the effects of aerosol and cloud on the climate system due to their unprecedented vertical and temporal resolution. Dozens of techniques have been developed in recent decades to retrieve the extinction and backscatter of atmospheric particulates in a variety of conditions. These methods, though often very successful, are fairly ad hoc in their construction, utilising a wide variety of approximations and assumptions that makes comparing the resulting data products with independent measurements difficult and their implementation in climate modelling virtually impossible. As with its application to satellite retrievals, the methods of non-linear regression can improve this situation by providing a mathematical framework in which the various approximations, estimates of experimental error, and any additional knowledge of the atmosphere can be clearly defined and included in a mathematically ‘optimal’ retrieval method, providing rigorously derived error estimates. In addition to making it easier for scientists outside of the lidar field to understand and utilise lidar data, it also simplifies the process of moving beyond extinction and backscatter coefficients and retrieving microphysical properties of aerosols and cloud particles. Such methods have been applied to a prototype Raman lidar system. A technique to estimate the lidar’s overlap function using an analytic model of the optical system and a simple extinction profile has been developed. This is used to calibrate the system such that a retrieval of the profile extinction and backscatter coefficients can be performed using the elastic and nitrogen Raman backscatter signals.
More details from the publisher
Details from ORA

Impact of clouds on aerosol scattering as observed by lidar

(2011)

Authors:

AC Povey, RG Grainger, DM Peters, JL Agnew, CL Wrench, D Rees

An initial assessment of the robust and compact hybrid environmental lidar (RACHEL)

(2010)

Authors:

AC Povey, DM Peters, RG Grainger, D Rees, JL Agnew

Abstract:

The Robust And Compact Hybrid Environmental Lidar (RACHEL) is a 355nm, 4-channel Raman lidar system that has been developed for unattended, continuous measurement of the distributions of particulates, water vapour, and other pollutants in the boundary layer and troposphere, including the capacity for scanning the full hemisphere. The system has been designed to be portable and low-cost, providing the potential to investigate a wide range of environments with a single instrument. Deployment at the beginning of 2010 at the STFC Chilbolton Observatory has provided a unique opportunity to cross-compare the instrument against the numerous lidar and radar systems stationed at the observatory and to evaluate the implementation of various measurements into the data evaluation, such as radiosondes, radiometers, and aircraft observations. The system was deployed during the Eyjafjallajökull eruption of April 2010, observing the appearance and evolution of the ash plume over southern England.
Details from ORA

The radiation tolerance of specific optical fibres exposed to 650 kGy(Si) of ionizing radiation

Journal of Instrumentation IOP Publishing 4:7 (2009)

Authors:

B Arvidsson, K Dunn, Cigdem Issever, Brian Huffman, M Jones, J Kierstead, G Kuyt, T Liu, A Povey, E Regnier, Anthony Weidberg, A Xiang, J Ye

Abstract:

The LHC upgrade will extensively increase the area of silicon detectors used in the ATLAS experiment and require substantial changes to the readout system of both the ATLAS and CMS experiments. The two experiments are expected to use optical systems for part of the data and control paths which must withstand levels of radiation equivalent to a dose of approximately 400 kGy(Si) at 30 cm from the collision region (including a safety factor of 1.5). As part of the search for acceptably radiation hard optical fibres, four Graded Index multimode (GRIN) optical fibres and one single-mode (SM) fibre were tested to 650 kGy(Si) equivalent dose. One of the GRIN fibres was also tested at 5 different dose rates, in order to understand the dose rate effects. These tests have validated the radiation tolerance of a single-mode fibre and two multimode fibres for use at the SLHC for warm operation. Some interesting features of the time dependence of the fibre radiation damage and future plans are discussed. © 2009 IOP Publishing Ltd and SISSA.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet