Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Turbulent kinetic energy spectra and cascades in the polar atmosphere of Saturn

Copernicus Publications (2021)

Authors:

Peter L Read, Arrate Antuñano, Simon Cabanes, Greg Colyer, Teresa del Rio-Gaztelurrutia, Agustin Sánchez-Lavega

Abstract:

The regions of Saturn’s cloud-covered atmosphere polewards of 60o latitude are dominated in each hemisphere near the cloud tops by an intense, cyclonic polar vortex surrounded by a strong, high latitude eastward zonal jet. In the north, this high latitude jet takes the form of a remarkably regular zonal wavenumber m=6 hexagonal pattern that has been present at least since the Voyager spacecraft encounters with Saturn in 1980-81, and probably much longer. The origin of this feature, and the absence of a similar feature in the south, has remained poorly understood since its discovery. In this work, we present some new analyses of horizontal wind measurements at Saturn’s cloud tops polewards of 60 degrees in both the northern and southern hemispheres, previously published by Antuñano et al. (2015) using images from the Cassini mission, in which we compute kinetic energy spectra and the transfer rates of kinetic energy (KE) and enstrophy between different scales. 2D KE spectra are consistent with a zonostrophic regime, with a steep (~n-5) spectrum for the mean zonal flow (n is the total wavenumber) and a shallower Kolmogorov-like KE spectrum (~n-5/3) for the residual (eddy) flow, much as previously found for Jupiter’s atmosphere (Galperin et al. 2014; Young & Read 2017). Three different methods are used to compute the energy and enstrophy transfers, (a) as latitude-dependent zonal spectral fluxes, (b) as latitude-dependent structure functions and (c) as spatially filtered energy fluxes. The results of all three methods are largely in agreement in indicating a direct (forward) enstrophy cascade across most scales, averaged across the whole domain, an inverse kinetic energy cascade to large scales and a weak direct KE cascade at the smallest scales. The pattern of transfers has a more complex dependence on latitude, however. But it is clear that the m=6 North Polar Hexagon (NPH) wave was transferring KE into its zonal jet at 78o N (planetographic) at a rate of ∏E ≈ 1.8 x 10-4 W kg-1 at the time the Cassini images were acquired. This implies that the NPH was not maintained by a barotropic instability at this time, but may have been driven via a baroclinic instability or possibly from deep convection. Further implications of these results will be discussed.

 

References

Antuñano, A., T. del Río-Gaztelurrutia, A. Sánchez-Lavega, and R. Hueso (2015), Dynamics of Saturn’s polar regions, J. Geophys. Res. Planets, 120, 155–176, doi:10.1002/2014JE004709.

Galperin, B., R. M.B. Young, S. Sukoriansky, N. Dikovskaya, P. L. Read, A. J. Lancaster & D. Armstrong (2014) Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter, Icarus, 229, 295–320.doi: 10.1016/j.icarus.2013.08.030

Young, R. M. B. & Read, P. L. (2017) Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer, Nature Phys., 13, 1135-1140. Doi:10.1038/NPHYS4227

 
 
 
 
More details from the publisher

Planetary and atmospheric properties leading to strong super-rotation in terrestrial atmospheres studied with a semi-grey GCM

Copernicus Publications (2021)

Authors:

Neil Lewis, Peter Read

Abstract:

Super-rotation is a phenomenon in atmospheric dynamics where the specific axial angular momentum of the wind (at some location) in an atmosphere exceeds that of the underlying planet at the equator. Hide's theorem states that in order for an atmosphere to super-rotate, non-axisymmetric disturbances (eddies) are required to induce transport of angular momentum up its local gradient. This raises a question as to the origin and nature of the disturbances that operate in super-rotating atmospheres to induce the required angular momentum transport.

The primary technique employed to investigate this question has involved numerically modelling super-rotating atmospheres, and diagnosing the processes that give rise to super-rotation in the simulations. These modelling efforts can be separated into one of two approaches. The first approach utilises 'realistic', tailor-made models of Solar System atmospheres where super-rotation is present (e.g., Venus and Titan) to investigate the specific processes responsible for generating super-rotation on each planet. The second approach takes simple, 'Earth-like' models, typically dry dynamical cores with radiative transfer represented using a Newtonian cooling approach, and explores the effect of varying a single (or occasionally multiple) planetary parameters (e.g., the planetary radius or rotation rate) on the atmospheric dynamics. Notably, studies of this flavour have shown that super-rotation may emerge 'spontaneously' on planets with slow rotation rate or small radius (relative to the Earth's; Venus and Titan have these characteristics). However, the strength of super-rotation obtained in simulations of this type is far weaker than that observed in Venus' or Titan's atmospheres, or in tailored numerical models of either planet.

In this work, our aim is to bridge the gap between these two modelling approaches. We will present results from a suite of simulations using an idealised general circulation model with a semi-grey representation of radiative transfer. Our experiments explore the effects of varying planetary size and rotation rate, atmospheric mass, and atmospheric absorption of shortwave radiation on the acceleration of super-rotation. A novel aspect of this work is that we vary multiple planetary properties away from their Earth-like 'defaults' in conjunction. This allows us to investigate how properties characteristic of the atmospheres of planets such as Venus and Titan combine to yield the strong super-rotation observed in their atmospheres (and realistic numerical models). We are also able to illustrate how features such as increased atmospheric mass and absorption of shortwave radiation modify the weakly super-rotating state obtained in simple, Earth-like models towards one more characteristic of Titan or Venus.
More details from the publisher

Cassini Saturn polar velocity fields

University of Oxford (2021)

Authors:

Arrate Antuñano, Teresa del Río Gaztelurrutia, R Hueso, Peter Read, Agustin Sanchez-Lavega

Abstract:

The data comprise two 2-dimensional gridded maps of horizontal wind measurements covering the north and south polar regions of Saturn, as previously published by Antuñano et al. (2015). As fully described in that paper, these measurements were derived from sets of Cassini Orbiter Imaging Sub-System (ISS) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images using the continuum band CB2 and CB3 filters, acquired for the northern hemisphere in June 2013 and for the southern hemisphere using WAC CB2 and CB3 images taken in October 2006 and December 2008. Additional NAC images using the CB2 and red filters taken in July 2008 were also used to analyse the southern polar vortex. The WAC images covered a region extending from a planetocentric latitude of around 60-65 degrees to each pole (apart from a segment in longitude between around 35 - 110 degrees W) with a horizontal resolution equivalent to around 0.05 degrees latitude (around 50km) per pixel, while NAC images were mostly used for the polar vortices, with a resolution equivalent to around 0.01 degrees latitude (around 10 km) per pixel. Horizontal velocities were obtained using semi-automated image correlation methods between pairs of images separated in time by intervals of approximately 1-10 hours. The correlation algorithm used pixel box sizes of 23 x 23 (in the north) or 25 x 25 (in the south), leading to a spatial resolution of the velocity vectors equivalent to around 1 degree latitude or 1000 km outside the polar vortices, reducing to around 0.2 degrees or 200 km within the polar vortices themselves. The automatically generated velocity vectors were supplemented by a small number (around 1% of the total) of vectors obtained manually from the motion of visually identified cloud tracers. The estimated measurement uncertainty on each vector was around 5-10 m/s. The original velocity vectors from Antuñano et al. (2015) were interpolated onto a regular latitude-longitude grid using convex hulls and Delauney triangulation via the QHULL routine of the Interactive Data Language (IDL). The final datasets are held on a regular grid separated by 3-4 degrees in longitude and 0.23 degrees in latitude. Data are stored as two text files, tabulating the latitude and (west) longitude of each point and the eastward and northward velocity components respectively in units of m/s. Reference: Antuñano,A., del Río-Gaztelurrutia,T., Sánchez-Lavega,A., & Hueso, R. (2015). Dynamics of Saturn’s polar regions. J. Geophys. Res.: Planets, 120, 155–176. doi: 10.1002/2014JE004709
More details from the publisher
Details from ORA

Revealing the intensity of turbulent energy transfer in planetary atmospheres

Geophysical Research Letters Wiley 47:23 (2020) e2020GL088685

Authors:

Simon Cabanes, Stefania Espa, Boris Galperin, Roland MB Young, Peter L Read

Abstract:

Images of the giant planets Jupiter and Saturn show highly turbulent storms and swirling clouds that reflect the intensity of turbulence in their atmospheres. Quantifying planetary turbulence is inaccessible to conventional tools, however, since they require large quantities of spatially and temporally resolved data. Here we show, using experiments, observations, and simulations, that potential vorticity (PV) is a straightforward and universal diagnostic that can be used to estimate turbulent energy transfer in a stably stratified atmosphere. We use the conservation of PV to define a length scale, LM, representing a typical distance over which PV is mixed by planetary turbulence. LM increases as the turbulent intensity increases and can be estimated from any latitudinal PV profile. Using this principle, we estimate LM within Jupiter's and Saturn's tropospheres, showing for the first time that turbulent energy transfer in Saturn's atmosphere is four times less intense than Jupiter's.
More details from the publisher
Details from ORA
More details

The turbulent dynamics of Jupiter’s and Saturn’s weather layers: order out of chaos?

Geoscience Letters Springer Nature 7:1 (2020) 10

Authors:

Peter L Read, Roland MB Young, Daniel Kennedy

Abstract:

The weather layers of the gas giant planets, Jupiter and Saturn, comprise the shallow atmospheric layers that are influenced energetically by a combination of incoming solar radiation and localised latent heating of condensates, as well as by upwelling heat from their planetary interiors. They are also the most accessible regions of those planets to direct observations. Recent analyses in Oxford of cloud-tracked winds on Jupiter have demonstrated that kinetic energy is injected into the weather layer at scales comparable to the Rossby radius of deformation and cascades both upscale, mostly into the extra-tropical zonal jets, and downscale to the smallest resolvable scales in Cassini images. The large-scale flow on both Jupiter and Saturn appears to equilibrate towards a state which is close to marginal instability according to Arnol’d’s 2nd stability theorem. This scenario is largely reproduced in a hierarchy of numerical models of giant planet weather layers, including relatively realistic models which seek to predict thermal and dynamical structures using a full set of parameterisations of radiative transfer, interior heat sources and even moist convection. Such models include (amongst others) the Jason GCM, developed in Oxford, which also represents the formation of (energetically passive) clouds of NH3, NH4SH and H2O condensates and the transport of condensable tracers. Recent results show some promise in comparison with observations from the Cassini and Juno missions, but some observed features (such as Jupiter’s Great Red Spot and other compact ovals) are not yet captured spontaneously by most weather layer models. We review recent work in this vein and discuss a number of open questions for future study.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet