Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Thermal versus mechanical topography: an experimental investigation in a rotating baroclinic annulus

Geophysical and Astrophysical Fluid Dynamics Taylor and Francis 114:6 (2020) 763-797

Authors:

SD Marshall, Peter Read

Abstract:

We present a series of experimental investigations in which a differentially-heated annulus was used to investigate the effects of topography on rotating, stratified flows. In particular, we investigate blocking effects via azimuthally varying differential-heating and compare them to previous experiments utilising partial mechanical barriers. The thermal topography used consisted of a flat patch of heating elements covering a small azimuthal extent of the base, forming an equivalent of a partial barrier, to study the difference between blocked and unblocked flow. These azimuthally-varying heating experiments produced results with many similarities to our previous experiments with a mechanical barrier, despite the lack of a physical obstacle or formation of bottom-trapped waves. In particular, a unique flow structure was found when the drifting flow and the topography interacted in the form of an “interference” regime at low Taylor number, but forming an erratic “irregular” regime at higher Taylor number. This suggests that blocking may be induced by either or both of a thermal or mechanical inhomogeneity. Evidence of coherent/persistent resonant wave triads was noted in both kinds of experiment, though the component wavenumbers of the wave-triads and their impact on the flow was found to depend on the topography in question.
More details from the publisher
Details from ORA
More details

Investigating the semiannual oscillation on Mars using data assimilation

Icarus Elsevier 333 (2019) 404-414 )

Authors:

Tao Ruan, Neil Lewis, S Lewis, Luca Montabone, Peter Read

Abstract:

A Martian semiannual oscillation (SAO), similar to that in the Earths tropical stratosphere, is evident in the Mars Analysis Correction Data Assimilation reanalysis dataset (MACDA) version 1.0, not only in the tropics, but also extending to higher latitudes. Unlike on Earth, the Martian SAO is found not always to reverse its zonal wind direction, but only manifests itself as a deceleration of the dominant wind at certain pressure levels and latitudes. Singular System Analysis (SSA) is further applied on the zonal-mean zonal wind in different latitude bands to reveal the characteristics of SAO phenomena at different latitudes. The second pair of principal components (PCs) is usually dominated by a SAO signal, though the SAO signal can be strong enough to manifest itself also in the first pair of PCs. An analysis of terms in the Transformed Eulerian Mean equation (TEM) is applied in the tropics to further elucidate the forcing processes driving the tendency of the zonal-mean zonal wind. The zonal-mean meridional advection is found to correlate strongly with the observed oscillations of zonal-mean zonal wind, and supplies the majority of the westward (retrograde) forcing in the SAO cycle. The forcing due to various non-zonal waves supplies forcing to the zonal-mean zonal wind that is nearly the opposite of the forcing due to meridional advection above ∼3 Pa altitude, but it also partly supports the SAO between 40 Pa and 3 Pa. Some distinctive features occurring during the period of the Mars year (MY) 25 global-scale dust storm (GDS) are also notable in our diagnostic results with substantially stronger values of eastward and westward momentum in the second half of MY 25 and stronger forcing due to vertical advection, transient waves and thermal tides
More details from the publisher
Details from ORA
More details

Barotropic and Zonostrophic Turbulence

Chapter in Zonal Jets, Cambridge University Press (CUP) (2019) 220-237

Authors:

Boris Galperin, Semion Sukoriansky, Roland MB Young, Rei Chemke, Yohai Kaspi, Peter L Read, Nadejda Dikovskaya
More details from the publisher

Convectively Driven Turbulence, Rossby Waves and Zonal Jets: Experiments on the Coriolis Platform

Chapter in Zonal Jets, Cambridge University Press (CUP) (2019) 135-151

Authors:

Peter L Read, Joel Sommeria, Roland MB Young
More details from the publisher

Exoplanets and the Sun

Chapter in Zonal Jets, Cambridge University Press (CUP) (2019) 104-116

Authors:

James Y-K Cho, Heidar TH Thrastarson, Tommi T Koskinen, Peter L Read, Steven M Tobias, Woosok Moon, Jack W Skinner
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet