Zonal Jet Flows in the Laboratory: An Introduction
Chapter in Zonal Jets, Cambridge University Press (CUP) (2019) 119-134
Zonal jets: Phenomenology, genesis, and physics
, 2019
Abstract:
In recent decades, great progress has been made in our understanding of zonal jets across many subjects - atmospheric science, oceanography, planetary science, geophysical fluid dynamics, plasma physics, magnetohydrodynamics, turbulence theory - but communication between researchers from different fields has been weak or non-existent. Even the terminology in different fields may be so disparate that researchers working on similar problems do not understand each other. This comprehensive, multidisciplinary volume will break cross-disciplinary barriers and aid the advancement of the subject. It presents a state-of-the-art summary of all relevant branches of the physics of zonal jets, from the leading experts. The phenomena and concepts are introduced at a level accessible to beginning graduate students and researchers from different fields. The book also includes a very extensive bibliography.Potential Vorticity of Saturn's Polar Regions: Seasonality and Instabilities
Journal of Geophysical Research: Planets American Geophysical Union (AGU) (2019)
Simulating Jupiter’s weather layer. Part I: Jet spin-up in a dry atmosphere
Icarus Elsevier 326 (2018) 225-252
Abstract:
We investigate the dynamics of Jupiter's upper troposphere and lower stratosphere using a General Circulation Model that includes two-stream radiation and optional heating from below. Based on the MITgcm dynamical core, this is a new generation of the Oxford Jupiter model [Zuchowski, L.C. et al., 2009. Plan. Space Sci., 57, 1525--1537, doi:10.1016/j.pss.2009.05.008]. We simulate Jupiter's atmosphere at up to 0.7 degree horizontal resolution with 33 vertical levels down to a pressure of 18 bar, in configurations with and without a 5.7 W/m2 interior heat flux. Simulations ran for 130000-150000 days to allow the deep atmosphere to come into radiative equilibrium. Baroclinic instability generates alternating, eddy-driven, midlatitude jets in both cases. With interior heating the zonal jets migrate towards the equator and become barotropically unstable. This generates Rossby waves that radiate away from the equator, depositing westerly momentum there via eddy angular momentum flux convergence and spinning up a super-rotating 20 m/s equatorial jet throughout the troposphere. There are 30-35 zonal jets with latitudinal separation comparable with the real planet, and there is strong eddy activity throughout. Without interior heating the jets do not migrate and a divergent eddy angular momentum flux at the equator spins up a broad, 50 m/s sub-rotating equatorial jet with weak eddy activity at low latitudes.Simulating Jupiter's weather layer. Part II: Passive ammonia and water cycles
Icarus Elsevier 326 (2018) 253-268