Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Complex Refractive Index Spectrum of CsPbBr3 Nanocrystals via the Effective Medium Approximation.

Nanomaterials (Basel, Switzerland) MDPI 15:3 (2025) ARTN 181

Authors:

Sang-Hyuk Park, Jungwon Kim, Min Ju Kim, Min Woo Kim, Robert A Taylor, Kwangseuk Kyhm

Abstract:

We have estimated the intrinsic complex refractive index spectrum of a CsPbBr<sub>3</sub> nanocrystal. With various dilute solutions of CsPbBr<sub>3</sub> nanocrystals dissolved in toluene, effective refractive indices were measured at two different wavelengths using Michelson interferometry. Given the effective absorption spectrum of the solution, a full spectrum of the effective refractive index was also obtained through the Kramers-Krönig relations. Based on the Maxwell-Garnett model in the effective medium approximation, the real and imaginary spectrum of the complex refractive index was estimated for the CsPbBr<sub>3</sub> nanocrystal, and the dominant inaccuracy was attributed to the size inhomogeneity.
More details from the publisher
More details
More details

Perovskite plasmonic nanowires

University of Oxford (2025)

Abstract:

Data for paper on plasmonic enhanced emission from perovskite nanowires
Details from ORA

Water-mediated optical and morphological tuning of highly stable orange-emitting Mn-doped perovskite for white light-emission

Journal of Colloid and Interface Science Elsevier 680:Part A (2024) 215-225

Authors:

Sangeun Cho, Vijaya Gopalan Sree, Akash V Fulari, Sanghyuk Park, Ming Mei, Minju Kim, Atanu Jana, Deblina Das, Hyunsik Im, Kwangseuk Kyhm, Robert A Taylor

Abstract:

The main challenges in the optical and morphological tuning of highly stable orange-emitting Mn-doped perovskite include achieving uniform dopant distribution, maintaining structural integrity under varying environmental conditions, and optimizing luminescent efficiency while minimizing non-radiative recombination pathways. This study presents a novel, one-step, water-induced ultrafast synthesis strategy for obtaining Mn-doped mixed-halide perovskites at room temperature. This technique offers morphological control by varying the amount of water-based precursor, allowing the tuning of resulting nanostructures to produce nanoplatelets, nanocubes, or nanowires. In the growth mechanism, Mn2+ dopants affect the crystal structure by promoting stable growth and uniform doping at higher concentrations, while water improves ion dispersion, reaction kinetics, and passivation, facilitating optimal crystal growth and the formation of desired nanostructure morphologies. The synthesized Mn:CsPbBr3−xClx NCs form a highly stable colloidal solution with approximately 100 % emission stability for up to one year under ambient conditions and retain 98.9 % of its photoluminescence after aging at 85 °C for 200 h. We also explore the PL mechanism in Mn:CsPbBr3-xClx NCs, where temperature-dependent PL analysis reveals energy transfer from CsPbBr3-xClx exciton states to Mn2+-doped levels, enhancing PL intensity, with both exciton and Mn2+ emissions exhibiting a blue shift as the temperature increased from 6 K to 300 K, attributed to lattice expansion and electron–phonon interactions. A warm white light emission is achieved with excellent stability and an exceptionally wide color gamut coverage. The proposed strategy has the potential to enable large-scale synthesis and fabrication of highly stable perovskite devices for high-quality display and lighting applications.
More details from the publisher
Details from ORA
More details
More details

Surface plasmon-mediated photoluminescence boost in graphene-covered CsPbBr3 quantum dots

Applied Surface Science Elsevier 681 (2024) 161601

Authors:

Youngsin Park, Elham Oleiki, Guanhua Ying, Atanu Jana, Mutibah Alanazi, Vitaly Osokin, Sangeun Cho, Robert A Taylor, Geunsik Lee

Abstract:

The optical properties of graphene (Gr)-covered CsPbBr3 quantum dots (QDs) were investigated using micro-photoluminescence spectroscopy, revealing a remarkable three orders of magnitude enhancement in photoluminescence (PL) intensity compared to bare CsPbBr3 QDs. To elucidate the underlying mechanisms, we combined experimental techniques with density functional theory (DFT) calculations. DFT simulations showed that the graphene layer generates interfacial electrostatic potential barriers when in contact with the CsPbBr3 surface, impeding carrier leakage from perovskite to graphene and enhancing radiative recombination. Additionally, graphene passivates CsPbBr3 surface defect states, suppressing nonradiative recombination of photo-generated carriers. Our study also revealed that graphene becomes n-doped upon contact with CsPbBr3 QDs, activating its plasmon mode. This mode resonantly couples with photo-generated excitons in the perovskite. The momentum mismatch between graphene plasmons and free-space photons is resolved through plasmon scattering at Gr/CsPbBr3 interface corrugations, facilitating the observed super-bright emission. These findings highlight the critical role of graphene as a top contact in dramatically enhancing CsPbBr3 QDs’ PL. Our work advances the understanding of graphene-perovskite interfaces and opens new avenues for designing high-efficiency optoelectronic devices. The multifaceted enhancement mechanisms uncovered provide valuable insights for future research in nanophotonics and materials science, potentially leading to breakthroughs in light-emitting technologies.

More details from the publisher
Details from ORA
More details

Thermally activated delayed fluorophore and plasmonic structures integrated with perovskites for X-ray scintillation and imaging

Matter Cell Press 7:10 (2024) 3256-3289

Authors:

Atanu Jana, Sangeun Cho, Kandasamy Sasikumar, Heongkyu Ju, Hyunsik Im, Robert A Taylor

Abstract:

The development of inexpensive and easily processable X-ray-sensitive materials is of great importance because a number of commercial scintillators, such as LaBr3(Ce), Gd3Al3Ga2O12(Ce), Cs2HfCl6, NaI:Tl, CsI:Tl, and LiI:Eu, are fabricated using highly toxic or rare-earth elements via high-temperature synthesis. This has spurred research into radioluminescence-enhancing mechanisms and solution-processable scintillating materials made from earth-abundant elements that have excellent optoelectronic properties, including high quantum yields and a low afterglow effect. In recent years, a range of metal halide perovskite (MHP) integrated with thermally activated delayed fluorescence (TADF) materials have been developed, exhibiting excellent scintillation properties and a high spatial resolution. Meanwhile, plasmonic technologies are reported to exploit light-energy confinement capabilities beyond the diffraction limit that produces local-field enhancement. This enhancement has subsequently improved the performance of small-sized optoelectronic devices such as solar cells and diagnostic optical sensors. This perspective summarizes the current development of innovative MHP, TADF, and plasmonic materials for use in scintillators and their integrated moieties while also identifying the relevant challenges. Following a thorough evaluation of the efforts made to improve the X-ray scintillation efficiency of these materials, we propose an outlook for future research in order to further enhance their scintillation properties and spatial resolution.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet