Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Local magnetic spin mismatch promoting photocatalytic overall water splitting with exceptional solar-to-hydrogen efficiency

Energy and Environmental Science Royal Society of Chemistry 15 (2021) 265-277

Abstract:

The photocatalytic overall water splitting (POWS) reaction using particulate catalysts is considered as an ideal approach for capturing solar energy and storing it in the form of hydrogen, however, current POWS systems are hindered by the slow separation but fast recombination of the photo-generated charge carriers, hence giving unsatisfactory performances. Here we report a dramatically improved POWS system for a Au-supported Fe3O4/N-TiO2 superparamagnetic photocatalyst promoted by local magnetic field effects. Strong local magnetic flux was induced by a weak external magnetic field of 180 mT, which then resulted in a quantum efficiency of 88.7% at 437 nm at 270 °C without any sacrificial reagent. The mechanism of the magnetic field effects was explored systematically and quantitatively by time-resolved spectroscopic technique and first-principles calculations, which suggested such enhancement was due to the greatly prolonged excitonic lifetime, originating from both the Lorentz force and spin-polarisation effects. By controllable manipulation of both features using local magnetic field, an unprecedented solar-to-hydrogen conversion efficiency of 11.9 ± 0.5% and an overall energy efficiency of 1.16 ± 0.05% were achieved in a particulate POWS system under AM 1.5G simulated solar illumination, which exceeds the STH goal of 10% for practical applications of POWS systems imposed by the United States Department of Energy.

More details from the publisher
Details from ORA
More details

Harvesting electrical energy using plasmon-enhanced light pressure in a platinum cut cone

Optics Express Optica 29:22 (2021) 35161-35171

Authors:

Ha Young Lee, Min Sub Kwak, Kyung-Won Lim, Hyung Soo Ahn, Geon-Tae Hwang, Dong Han Ha, Robert A Taylor, Sam Nyung Yi

Abstract:

We have designed a method of harvesting electrical energy using plasmon-enhanced light pressure. A device was fabricated as a cut cone structure that optimizes light collection so that the weak incident light pressure can be sufficiently enhanced inside the cut cone to generate electrical energy. An increase in the device's current output is a strong indication that the pressure of incident light has been enhanced by the surface plasmons on a platinum layer inside the cut cone. The electrical energy harvested in a few minutes by irradiating pulsed laser light on a single micro device was possible to illuminate a blue LED.
More details from the publisher
Details from ORA
More details
More details

An insight study into the parameters altering the emission of a covalent triazine framework

Journal of Materials Chemistry C Materials for optical and electronic devices Royal Society of Chemistry 9 (2021) 13770-13781

Authors:

Panagiota Bika, Vitaly Osokin, Tatiana Giannakopoulou, Nadia Todorova, Mo Li, Andreas Kaidatzis, Robert A Taylor, Christos Trapalis, Panagiotis Dallas

Abstract:

Covalent triazine frameworks (CTFs) synthesized through nucleophilic substitution of 4,4’ bipyridine on the carbon atoms of cyanuric chloride were studied as fluorescent sensors. The band gap of the materials was calculated to be 2.95 eV from diffuse reflectance measurements, while from the adsorption in aqueous dispersions, we obtained the value of 3.7 eV. A partial exfoliation of the layered CTFs in water or tetrahydrofuran led to different morphologies, increased emission lifetime and fluorescence quantum yield. The pattern of their light emission properties in combination with their redox states was defined with the addition of a series of acidic and basic analytes. Another unique aspect of these semiconducting materials is the induced aggregation and the subsequent enhancement of emission under ultraviolet illumination.
More details from the publisher
Details from ORA
More details

Quantification of temperature-dependent charge separation and recombination dynamics in non-fullerene organic photovoltaics

Advanced Functional Materials Wiley 31:48 (2021) 2107157

Authors:

Christopher CS Chan, Chao Ma, Xinhui Zou, Zengshan Xing, Guichuan Zhang, Hin‐Lap Yip, Robert Taylor, Yan He, Kam Sing Wong, Philip CY Chow

Abstract:

Transient optical spectroscopy is used to quantify the temperature-dependence of charge separation and recombination dynamics in P3TEA:SF-PDI2 and PM6:Y6, two non-fullerene organic photovoltaic (OPV) systems with a negligible driving force and high photocurrent quantum yields. By tracking the intensity of the transient electroabsorption response that arises upon interfacial charge separation in P3TEA:SF-PDI2, a free charge generation rate constant of ≈2.4 × 1010 s−1 is observed at room temperature, with an average energy of ≈230 meV stored between the interfacial charge pairs. Thermally activated charge separation is also observed in PM6:Y6, and a faster charge separation rate of ≈5.5 × 1010 s−1 is estimated at room temperature, which is consistent with the higher device efficiency. When both blends are cooled down to cryogenic temperature, the reduced charge separation rate leads to increasing charge recombination either directly at the donor-acceptor interface or via the emissive singlet exciton state. A kinetic model is used to rationalize the results, showing that although photogenerated charges have to overcome a significant Coulomb potential to generate free carriers, OPV blends can achieve high photocurrent generation yields given that the thermal dissociation rate of charges outcompetes the recombination rate.
More details from the publisher
Details from ORA
More details

Resonantly pumped bright-triplet exciton lasing in cesium lead bromide perovskites

ACS Photonics American Chemical Society 8:9 (2021) 2699-2704

Authors:

Guanhua Ying, Tristan Farrow, Atanu Jana, Hanbo Shao, Hyunsik Im, Vitaly Osokin, Seung Bin Baek, Mutibah Alanazi, Sanjit Karmakar, Manas Mukherjee, Youngsin Park, Robert A Taylor

Abstract:

The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive for future optoelectronic applications, especially in bright low-threshold nanolasers. While nonresonantly pumped lasing from all-inorganic lead-halide perovskites is now well-established as an attractive pathway to scalable low-power laser sources for nano-optoelectronics, here we showcase a resonant optical pumping scheme on a fast triplet-state in CsPbBr<sub>3</sub> nanocrystals. The scheme allows us to realize a polarized triplet-laser source that dramatically enhances the coherent signal by 1 order of magnitude while suppressing noncoherent contributions. The result is a source with highly attractive technological characteristics, including a bright and polarized signal and a high stimulated-to-spontaneous emission signal contrast that can be filtered to enhance spectral purity. The emission is generated by pumping selectively on a weakly confined excitonic state with a Bohr radius ∼10 nm in the nanocrystals. The exciton fine-structure is revealed by the energy-splitting resulting from confinement in nanocrystals with tetragonal symmetry. We use a linear polarizer to resolve 2-fold nondegenerate sublevels in the triplet exciton and use photoluminescence excitation spectroscopy to determine the energy of the state before pumping it resonantly.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet