Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Emeritus Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 164
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Room‐Temperature Collective Quantum Emission Mediated by Wannier–Mott Excitons in CsPbBr 3 Nanowires

Small Science Wiley (2025) e202500400

Authors:

Mutibah Alanazi, Atanu Jana, Duc Anh Nguyen, Sangeun Cho, Sanghyuk Park, Hannu P Pasanen, Oleksandr Matiash, Frédéric Laquai, Robert A Taylor, Youngsin Park

Abstract:

Room‐temperature collective quantum emission (RT‐CQE), enabled by many‐body interactions and phase‐synchronized dipole oscillations, offers a promising path for scalable quantum photonics. Here, superfluorescence (SF) is demonstrated in CsPbBr3 perovskite nanowires (NWs), facilitated by Wannier–Mott excitons with spatially delocalized wavefunctions and strong dipole–dipole interactions. The intrinsic quasi‐1D geometry and occasional bundling promote preferential dipole alignment along the NW axis, enabling long‐range phase coherence. Key experimental signatures, photon bunching with g2(0) ≈2, femtosecond‐scale coherence time (≈88 fs), and ultralow excitation threshold (≈210 nJ−1 cm2), confirm the onset of SF at ambient conditions. Ultrafast spectroscopy reveals bandgap renormalization, state filling, and exciton‐phonon coupling, consistent with collective excitonic behavior mediated by delocalized states. Unlike other RT‐SF mechanisms based on polarons or electron–hole liquids, the system exploits directional dipole alignment and exciton delocalization in quasi‐1D NWs, allowing coherent emission without the need for high excitation densities or complex structural ordering. These findings demonstrate that CsPbBr3 NWs can sustain RT‐SF driven by exciton delocalization and directional dipole coupling, providing a new physical platform for coherent light generation under ambient conditions.
More details from the publisher
Details from ORA
More details
More details

Simultaneous bright singlet and triplet emissions in CsPbBr3 nanocrystals for next-generation light sources

Materials Today Physics Elsevier 57 (2025) 101839

Authors:

Youngsin Park, Atanu Jana, Sangeun Cho, Robert A Taylor, Geunsik Lee

Abstract:

Lead halide perovskite nanocrystals exhibit excellent optoelectronic properties, yet simultaneous observation of bright singlet and triplet exciton emissions under identical conditions has remained elusive. This limitation hinders optimization of quantum efficiency in light-emitting devices. Here, we provide the direct spectroscopic evidence for coexisting bright singlet and triplet excitons in CsPbBr3 nanocrystals, overcoming the conventional 25 % spin-statistical efficiency ceiling. Using polarization-resolved, spatially resolved, and time-resolved micro-photoluminescence at 7 K, we resolve three sharp triplet fine-structure components (T1, T2, T3) with energy separations of 1–3 meV and linear polarization >85 %, coexisting with broad singlet emission. The triplet emissions display distinct polarization axes, nonlinear intensity scaling, and nanosecond lifetimes, confirming their assignment as Rashba-split bright triplet states. Spatial mapping reveals that these emissions arise from structurally pristine domains with exciton diffusion lengths exceeding 9 μm. Time-resolved measurements show concurrent fast and slow decay components, consistent with singlet-to-triplet intersystem crossing followed by radiative triplet recombination. Our findings establish a comprehensive picture of exciton spin dynamics in perovskite nanocrystals and open new avenues for spin-engineered photonic devices. This work lays the foundation for next-generation LEDs, lasers, and quantum light sources that leverage both singlet and triplet radiative channels to exceed traditional efficiency limits. While these findings are demonstrated at cryogenic temperatures, they highlight essential spin-related mechanisms that could be harnessed for room-temperature operation through enhanced Rashba coupling, dielectric engineering, or compositional tuning.
More details from the publisher
More details

Hydrazine‐Mediated Thermally Assisted Photocatalytic Ammonia Decomposition Over Layered Protonated Perovskites

Advanced Science Wiley (2025) e11212

Authors:

Haozhe Zhang, Mengqi Duan, Shuai Guo, Renzo Leeflang, Dorottya Szalay, Jiasi Li, Jo‐chi Tseng, Simson Wu, Songhua Cai, Dharmalingam Prabhakaran, Robert A Taylor, Yiyang Li, Shik Chi Edman Tsang

Abstract:

Photocatalytic ammonia decomposition offers a sustainable route for hydrogen production, but its development is limited by low catalytic efficiency and poorly understood mechanisms. Here, a protonated layered perovskite, HPrNb2O7 (HPNO), is reported as an efficient catalyst for ammonia decomposition under mild photo‐thermal conditions. Upon exposure to NH3 at elevated temperatures, HPNO promotes the in situ formation and intercalation of hydrazine intermediates within its interlayer galleries, enabled by thermally generated oxygen vacancies and hydrogen bonding. Advanced characterization techniques have been applied to confirm the formation and stabilization of hydrazine. It is also shown that thermal energy prolongs charge carrier lifetimes and enhances oxygen vacancy formation, contributing to a strong photo‐thermal synergy. The stabilization of hydrazine intermediate promotes the associative mechanism, lowering the activation barrier, thus leading to an enhanced hydrogen evolution rate of 1311.2 µmol·g−1·h−1 at 200 °C under simulated solar irradiation without any noble metal co‐catalyst. This work reveals a distinct, hydrazine‐mediated reaction pathway and positions layered protonated perovskites as promising materials for efficient, solar‐driven ammonia decomposition and sustainable hydrogen generation.
More details from the publisher
Details from ORA
More details
More details

Ultrastable Perovskite Encased in a Helical Cage for Tunable Full‐Color Mirror‐Image Circularly Polarized Luminescence

Advanced Functional Materials Wiley (2025) e14790

Authors:

Deblina Das, Youngsin Park, Sourav Mal, Kwangseuk Kyhm, Robert A Taylor, Atanu Jana, Sangeun Cho

Abstract:

Achieving stable and efficient circularly polarized luminescence (CPL) from achiral perovskite nanocrystals (PNCs) remains a major challenge in the development of advanced chiroptical materials. Herein, the syntheses of a total of nine compounds, including full‐color colloidal polymer‐capped PNC composites are reported based on organic‐inorganic hybrid perovskites and inorganic 2D nanosheets (NSs) using phenacyl halide as a single organic source of halide precursor. While the initial PNCs exhibit low photoluminescence quantum yield (PL QY) and poor stability, a previously unexplored surface absorption/ion exchange strategy employing 2D‐ZrH2P2O8 NSs significantly enhances both optical properties and long‐term stability, e.g., the FAPbBr3@ZrH2P2O8 (FA = formamidinium) composite exhibits a significantly enhanced PL QY of 88.57%, compared to 30.9% for the pristine counterparts, owing to the protective effect of the robust 2D ZrH2P2O8 network that enhances stability under ambient conditions. Crucially, embedding these stabilized PNCs into a chiral polymer matrix induces distinct mirror‐image strong CPL signals both in solution and solid‐state. This rare dual‐phase CPL activity arises from the conformational adaptability of the chiral polymer, which imparts chirality to the achiral PNCs via both covalent and non‐covalent interactions. These findings present a versatile strategy for producing robust, CPL‐active stable perovskite materials across the visible spectrum for next‐generation chiroptoelectronic devices.
More details from the publisher
Details from ORA
More details

Toward α‑CsPbI3 Quantum Dots via Dual-Functional Fluorinated Acidic Ligand

ACS Energy Letters American Chemical Society (ACS) (2025) 4402-4409

Authors:

Jongbeom Kim, Ye In Kim, Hengquan Guo, Dongryeol Lee, Jinkyu Yang, Dongeun Kim, Su Seok Choi, Junzhi Ye, Robert LZ Hoye, Robert A Taylor, Seung Geol Lee, Myoung Hoon Song

Abstract:

Weakly bonded native ligands severely degrade the performance of perovskite quantum dot (PeQD) light-emitting diodes (LEDs). While conventional approaches can be used to strengthen ligand binding, they fail to achieve complete ligand exchange, leaving residual ligands that promote degradation. Herein, we present a dual-functional fluorinated benzyl phosphonic acid (F-BPA) ligand that modulates the acidity and enhances the binding affinity between the phosphonate groups of F-BPA and the perovskite surface compared to BPA due to a significant redistribution of the electrostatic potential of the molecule induced by fluorination. The F-BPA treatment facilitates effective ligand exchange and obtains well-passivated CsPbI3 PeQDs with improved stability under thermal, light, and polar solvent stress. Red-emissive LEDs achieved a maximum external quantum efficiency of 24.0% with improved device stability (half-lifetime of 1,020 min at 100 cd m–2). This study demonstrates a dual-functional ligand strategy and opens a new pathway toward PeQDs for next-generation display technologies.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet