Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Three-photon excitation of quantum two-level systems

CLEO: Fundamental Science, CLEO:FS 2023 (2023)

Authors:

V Villafane, B Scaparra, M Rieger, S Appel, R Trivedi, RA Oliver, RA Taylor, JJ Finley, K Müller

Abstract:

We demonstrate that a two-level system, in form of an InGaN quantum dot, can only be efficiency excited using an odd number of photons (1 or 3) while resonant two-photon excitation is strongly suppressed.
More details from the publisher

Three-photon excitation of quantum two-level systems

CLEO: Applications and Technology, CLEO:A and T 2023 (2023)

Authors:

V Villafane, B Scaparra, M Rieger, S Appel, R Trivedi, RA Oliver, RA Taylor, JJ Finley, K Müller

Abstract:

We demonstrate that a two-level system, in form of an InGaN quantum dot, can only be efficiency excited using an odd number of photons (1 or 3) while resonant two-photon excitation is strongly suppressed.
More details from the publisher

Modal gain enhancement of perovskite nanosheets by a patterned waveguide via spectral-length gain analysis

(2023)

Authors:

Robert Taylor, Inhong Kim, Ga Eul Choi, Ming Mei, Min Woo Kim, Minju Kim, Young Woo Kwon, Tae-In Jeong, Seungchul Kim, Suck Won Hong, Kwangseuk Kyhm
More details from the publisher

Elliptical polarization of localized states in an anisotropic single GaAs quantum ring

Nanomaterials MDPI 13:1 (2022) 184

Authors:

Seongho Park, Minju Kim, Inhong Kim, Robert A Taylor, Jindong Song, Kwangseuk Kyhm

Abstract:

Localized states in an anisotropic single GaAs quantum ring were investigated in terms of polarization dependence of micro-photoluminescence spectrum at 5K. Given four Stokes parameters measured with a pair of linear polarizers and waveplates, the elliptical polarization states of two different vertical confinement states (k=1 and k=2) were compared with phase, rotation, and ellipticity angles. While the polarized emission intensity of the k=2 states becomes enhanced along [1,1,0] compared to that along [1,1¯,0], the polarization asymmetry of the k=1 states shows the opposite result. We conclude the polarization state is determined by the shape of the lateral wavefunctions. In the k=2 state, crescent-like wavefunctions are strongly localized, but the k=1 state consists of two crescent-like wavefunctions, which are connected weakly through quantum tunneling.
More details from the publisher
Details from ORA
More details
More details

Design of free-space couplers for suspended triangular nano-beam waveguides

Journal of Physics D: Applied Physics IOP Publishing 55:47 (2022) 474002

Authors:

Jp Hadden, Cobi Maynard, Daryl M Beggs, Robert A Taylor, Anthony J Bennett

Abstract:

Photonic waveguides (WGs) with triangular cross section are being investigated for material systems such as diamond, glasses and gallium nitride, which lack easy options to create conventional rectangular nanophotonic waveguides. The design rules for optical elements in these triangular WGs, such as couplers and gratings, are not well established. Here we present simulations of elements designed to couple light into, and out of, triangular WGs from the vertical direction, which can be implemented with current angled-etch fabrication technology. The devices demonstrate coupling efficiencies approaching 50% for light focused from a high numerical aperture objective. The implementation of such couplers will enable fast and efficient testing of closely spaced integrated circuit components.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet