Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Reducing nonradiative losses in perovskite LEDs through atomic layer deposition of Al2O3 on the hole-injection contact

ACS Nano American Chemical Society 17:4 (2023) 3289-3300

Authors:

Emil Dyrvik, Jonathan Warby, Melissa McCarthy, Alexandra Ramadan, Karl-Augustin Zaininger, Andreas Lauritzen, Suhas Mahesh, Robert Taylor, Henry Snaith

Abstract:

Halide perovskite light-emitting diodes (PeLEDs) exhibit great potential for use in next-generation display technologies. However, scale-up will be challenging due to the requirement of very thin transport layers for high efficiencies, which often present spatial inhomogeneities from improper wetting and drying during solution processing. Here, we show how a thin Al2O3 layer grown by atomic layer deposition can be used to preferentially cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer, allowing hole conduction and injection to persist through the organic hole transporter. This has the dual effect of reducing nonradiative recombination at the heterojunction and improving carrier selectivity, which we infer to be due to the inhibition of direct contact between the indium tin oxide and perovskite layers. We observe an immediate improvement in electroluminescent external quantum efficiency in our p-i-n LEDs from an average of 9.8% to 13.5%, with a champion efficiency of 15.0%. The technique uses industrially available equipment and can readily be scaled up to larger areas and incorporated in other applications such as thin-film photovoltaic cells.
More details from the publisher
Details from ORA
More details
More details

Optical gain of vertically coupled Cd0.6Zn0.4Te/ZnTe quantum dots

Nanomaterials MDPI 13:4 (2023) 716

Authors:

Ming Mei, Minju Kim, Minwoo Kim, Inhong Kim, Hong Seok Lee, Robert A Taylor, Kwangseuk Kyhm

Abstract:

The optical modal gain of Cd0.6Zn0.4Te/ZnTe double quantum dots was measured using a variable stripe length method, where large and small quantum dots are separated with a ZnTe layer. With a large (~18 nm) separation layer thickness of ZnTe, two gain spectra were observed, which correspond to the confined exciton levels of the large and small quantum dots, respectively. With a small (~6 nm) separation layer thickness of ZnTe, a merged single gain spectrum was observed. This can be attributed to a coupled state between large and small quantum dots. Because the density of large quantum dots (4 × 1010 cm−2) is twice the density of small quantum dots (2 × 1010 cm−2), the density of the coupled quantum dots is determined by that of small quantum dots. As a result, we found that the peak gain (123.9 ± 9.2 cm−1) with the 6 nm separation layer is comparable to that (125.2 ± 29.2 cm−1) of the small quantum dots with the 18 nm separation layer.
More details from the publisher
Details from ORA
More details
More details

Direct current piezoelectric energy harvesting based on plasmon-enhanced solar radiation pressure

Advanced Optical Materials Wiley 11:7 (2023) 2202212

Authors:

Ha Young Lee, Min Sub Kwak, Geon-Tae Hwang, Hyung Soo Ahn, Robert AA Taylor, Dong Han Ha, Sam Nyung Yi

Abstract:

A piezoelectric energy generating device that produces electricity using plasmon-enhanced solar radiation pressure (SRP) is developed. The SRP is greatly enhanced on the operational region of the device with a unique crater-like structure, and direct current is generated successfully on the device. By optimizing the material and thickness of top electrode, a maximum power density of 396 µW cm−2 is obtained. In addition, by using Raman measurements, finite-difference time-domain simulation, and COMSOL Multiphysics analysis, it is confirmed that the SRP is greatly amplified on the operational region with the nanoscale surface roughness due to resonance between the incident light and surface plasmons. By increasing the rotational speed of an optical chopper used to measure the change in the output characteristics of the device, and comparing this with the simulated result, it is found that the constant charge produced by the piezoelectric effect arose due to the superposition of charge phases in the device.
More details from the publisher
Details from ORA
More details

Molecular layer-by-layer re-stacking of MoS2–In2Se3 by electrostatic means: assembly of a new layered photocatalyst

Materials Chemistry Frontiers Royal Society of Chemistry 7:5 (2023) 937-945

Authors:

Bryan KY Ng, Cherie CY Wong, Wentian Niu, Hector P Garcia, Yiyang Li, Ping-Luen Ho, Winson CH Kuo, Robert A Taylor, Keita Taniya, Qi Wei, Mingjie Li, Michail Stamatakis, Shik Chi Edman Tsang

Abstract:

2D-layered transition metal chalcogenides are useful semiconductors for a wide range of opto-electronic applications. Their similarity as layered structures offers exciting possibility to modify their electronic properties by creating new heterojunction assemblies from layer-by-layer restacking of individual monolayer sheets, however, the lack of specific interaction between these layers could induce phase segregation. Here, we employed a chemical method using n-BuLi to exfoliate MoS2 and In2Se3 into their monolayer-containing colloids in solution. The bulky Se atoms can be selectively leached from In2Se3 during Li treatment which gives positively charged surface monolayers in neutral pH whereas the strong polarization of Mo–S with moderate S leaching gives a negatively charged surface. Specific interlayer electrostatic attraction during their selective assembly gives a controllable atomic AB-type of layer stacking as supported by EXAFS, STEM with super-EDX mapping, TAS/TRPL and DFT calculations. Using this simple but inexpensive bottom-up solution method, a new photocatalyst assembled from layers for photo water splitting can be tailor-made with high activity.
More details from the publisher
Details from ORA
More details

Reducing Nonradiative Losses in Perovskite LEDs Through Atomic Layer Deposition of Al2O3 on the Hole-injection Contact

University of Oxford (2023)

Authors:

Emil Dyrvik, Robert Taylor, Alexandra Ramadan, Jonathan Warby, Andreas Lauritzen, Karl-Augustin Zaininger, Henry Snaith, Suhas Mahesh, Melissa McCarthy

Abstract:

Experimental research data collected in laboratories at the Clarendon Laboratory, 2020-2022.
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet