Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Resonantly pumped bright triplet exciton lasing in caesium lead bromide perovskites

University of Oxford (2021)

Authors:

Guanhua Ying, Tristan Farrow, Atanu Jana, Vitaly Osokin, Hanbo Shao, Youngsin Park, Robert A Taylor

Abstract:

The research looks into the lasing phenomenon from the tetragonally symmetric CsPbBr3 perovskite nanocrystals. The emission has been demonstrated to originate from the triplet state via polarisation and lifetime verifications. A resonantly pumped excitation source has been adopted to tune the inter-level transition resonantly, which significantly enhances the emission characteristics. The data follows the order of the figures contained in the corresponding paper and a comment in each data file explains what each column of the data stands for. The data files cover all the experimental results presented in the main text of the paper.
More details from the publisher
Details from ORA

Two-photon Laser-written Photoalignment Layers for Patterning Liquid Crystalline Conjugated Polymer Orientation

Advanced Functional Materials Wiley (2020)

Authors:

STEPHEN MORRIS, Patrick SALTER, Robert TAYLOR, Steve ELSTON, Donal BRADLEY
More details from the publisher
Details from ORA
More details

Excitation and temperature dependence of the broad gain spectrum in GaAs/AlGaAs quantum rings

Applied Physics Letters AIP Publishing 117:21 (2020) 213101

Authors:

Juyeong Jang, Seunghwan Lee, Minju Kim, Sunwoo Woo, Inhong Kim, Jihoon Kyhm, Jindong Song, Robert Taylor, Kwangseuk Kyhm

Abstract:

We have employed a variable stripe length method in order to measure the optical gain of GaAs/AlGaAs quantum rings. Although the large lateral diameter of quantum rings (∼ 50 nm) with a few nm size distribution is expected to cause a small spectral inhomogeneity (∼ 1 %), a broad gain width (∼ 300 meV) was observed. This result was attributed to a variation of the vertical heights and variations in localized states that exhibit crescent shaped wavefunctions, whereby the energy levels are distributed over a broad spectral range. When the excitation intensity is decreased, irregular peaks appear in the gain spectrum gradually. Similar phenomena were also observed with increased temperature. We conclude that excited carriers in quantum rings are distributed stochastically at various localized states, and the population inversion is sensitive to excitation intensity and temperature.
More details from the publisher
Details from ORA
More details

Highly efficient photoluminescence and lasing from hydroxide coated fully inorganic perovskite micro/nano-rods

Advanced Optical Materials Wiley 8:23 (2020) 2001235

Authors:

Guanhua Ying, A Jana, Vitaly Osokin, Youngsin Park, Robert Taylor, Tristan Farrow

Abstract:

The effect of surface passivation on the photoluminescence (PL) emitted by CsPbBr3 micro/nano‐rods coated with Pb(OH)2 is investigated, where a high quantum yield and excellent stability for the emission are found. The CsPbBr3/Pb(OH)2 rods generally present a peak that is blue shifted compared to that seen in rods without a hydroxide cladding at low temperatures. By increasing the temperature, it is further shown that the passivated surface states are very robust against thermal effects and that the PL peak intensity only drops by a factor of 1.5. Localized stimulated emission at defect states found within larger rods is also demonstrated, clarified by spatially resolved confocal PL mapping along the length of the rods. The diffusion parameter of the carrier density distribution is measured to be 5.70 µm for the sky‐blue emission, whereas for the defect lasing site it is found to be smaller than this excitation spot size.
More details from the publisher
Details from ORA
More details

Coarse and fine-tuning of lasing transverse electromagnetic modes in coupled all-inorganic perovskite quantum dots

Nano Research Springer Science and Business Media LLC (2020)

Authors:

Youngsin Park, Guanhua Ying, Atanu Jana, Vitaly Osokin, Claudius C Kocher, Tristan Farrow, Robert A Taylor, Kwang S Kim

Abstract:

<jats:title>Abstract</jats:title> <jats:p>Inorganic perovskite lasers are of particular interest, with much recent work focusing on Fabry-Pérot cavity-forming nanowires. We demonstrate the direct observation of lasing from transverse electromagnetic (TEM) modes with a long coherence time ∼ 9.5 ps in coupled CsPbBr<jats:sub>3</jats:sub> quantum dots, which dispense with an external cavity resonator and show how the wavelength of the modes can be controlled via two independent tuning-mechanisms. Controlling the pump power allowed us to fine-tune the TEM mode structure to the emission wavelength, thus providing a degree of control over the properties of the lasing signal. The temperature-tuning provided an additional degree of control over the wavelength of the lasing peak, importantly, maintained a constant full width at half maximum (FWHM) over the entire tuning range without mode-hopping.</jats:p>
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet