Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Emeritus Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 164
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Fe on molecular-layer MoS2 as inorganic Fe-S-2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures

Chem Catalysis Cell Press 1:1 (2021) 162-182

Authors:

Jianwei Zheng, Lilin Lu, Konstantin Lebedev, Simson Wu, Pu Zhao, Ian J McPherson, Tai-Sing Wu, Ryuichi Kato, Yiyang Li, Ping-Luen Ho, Guangchao Li, Linlu Bai, Jianhui Sun, Dharmalingam Prabhakaran, Robert A Taylor, Yun-Liang Soo, Kazu Suenaga, Shik Chi Edman Tsang

Abstract:

Current industrial production of ammonia from the Haber-Bosch process and its transport concomitantly produces a large quantity of CO2. Herein, we successfully synthesize inorganic-structure-based catalysts with [Fe-S2-Mo] motifs with a connecting structure similar to that of FeMoco (a cofactor of nitrogenase) by placing iron atoms on a single molecular layer of MoS2 at various loadings. This type of new catalytic material functionally mimics the nitrogenase to convert N2 to ammonia and hydrogen in water without adding any sacrificial agent under visible-light illumination. Using the elevated temperature boosts the ammonia yield and the energy efficiency by one order of magnitude. The solar-to-NH3 energy-conversion efficiency can be up to 0.24% at 270°C, which is the highest efficiency among all reported photocatalytic systems. This method of ammonia production and the photocatalytic materials may open up an exciting possibility for the decentralization of ammonia production for fertilizer provision to local farmlands using solar illumination.
More details from the publisher
Details from ORA
More details

Imaging non-radiative point defects buried in quantum wells using cathodoluminescence

(2021)

Authors:

Thomas Weatherley, Wei Liu, Vitaly Osokin, Duncan Alexander, Robert Taylor, Jean-François Carlin, Raphaël Butté, Nicolas Grandjean
More details from the publisher

Resonantly pumped bright triplet exciton lasing in caesium lead bromide perovskites

University of Oxford (2021)

Authors:

Guanhua Ying, Tristan Farrow, Atanu Jana, Vitaly Osokin, Hanbo Shao, Youngsin Park, Robert A Taylor

Abstract:

The research looks into the lasing phenomenon from the tetragonally symmetric CsPbBr3 perovskite nanocrystals. The emission has been demonstrated to originate from the triplet state via polarisation and lifetime verifications. A resonantly pumped excitation source has been adopted to tune the inter-level transition resonantly, which significantly enhances the emission characteristics. The data follows the order of the figures contained in the corresponding paper and a comment in each data file explains what each column of the data stands for. The data files cover all the experimental results presented in the main text of the paper.
More details from the publisher
Details from ORA

Two-photon Laser-written Photoalignment Layers for Patterning Liquid Crystalline Conjugated Polymer Orientation

Advanced Functional Materials Wiley (2020)

Authors:

STEPHEN MORRIS, Patrick SALTER, Robert TAYLOR, Steve ELSTON, Donal BRADLEY
More details from the publisher
Details from ORA
More details

Excitation and temperature dependence of the broad gain spectrum in GaAs/AlGaAs quantum rings

Applied Physics Letters AIP Publishing 117:21 (2020) 213101

Authors:

Juyeong Jang, Seunghwan Lee, Minju Kim, Sunwoo Woo, Inhong Kim, Jihoon Kyhm, Jindong Song, Robert Taylor, Kwangseuk Kyhm

Abstract:

We have employed a variable stripe length method in order to measure the optical gain of GaAs/AlGaAs quantum rings. Although the large lateral diameter of quantum rings (∼ 50 nm) with a few nm size distribution is expected to cause a small spectral inhomogeneity (∼ 1 %), a broad gain width (∼ 300 meV) was observed. This result was attributed to a variation of the vertical heights and variations in localized states that exhibit crescent shaped wavefunctions, whereby the energy levels are distributed over a broad spectral range. When the excitation intensity is decreased, irregular peaks appear in the gain spectrum gradually. Similar phenomena were also observed with increased temperature. We conclude that excited carriers in quantum rings are distributed stochastically at various localized states, and the population inversion is sensitive to excitation intensity and temperature.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet