Exciton dynamics in monolayer graphene grown on a Cu(111) surface
Abstract:
We have characterized the carrier dynamics of the excitonic emission emerging from a monolayer of graphene grown on a Cu(111) surface. Excitonic emission from the graphene, with strong and sharp peaks both with a full-width at half-maximum of 2.7 meV, was observed near ~3.16 and ~3.18 eV at 4.2 K. The carrier recombination parameters were studied by measuring both temperature-dependent and time-resolved photoluminescence. The intensity variation with temperature of these two peaks shows an opposing trend. The time-resolved emission was modelled using coupled differential equations and the decay time was found to be dominated by carrier trapping and Auger recombination as the temperature increased.Resonantly pumped bright-triplet exciton lasing in caesium lead bromide perovskites
Imaging nonradiative point defects buried in quantum wells using cathodoluminescence
Abstract:
Crystallographic point defects (PDs) can dramatically decrease the efficiency of optoelectronic semiconductor devices, many of which are based on quantum well (QW) heterostructures. However, spatially resolving individual nonradiative PDs buried in such QWs has so far not been demonstrated. Here, using high-resolution cathodoluminescence (CL) and a specific sample design, we spatially resolve, image, and analyze nonradiative PDs in InGaN/GaN QWs at the nanoscale. We identify two different types of PDs by their contrasting behavior with temperature and measure their densities from 1014 cm–3 to as high as 1016 cm–3. Our CL images clearly illustrate the interplay between PDs and carrier dynamics in the well: increasing PD concentration severely limits carrier diffusion lengths, while a higher carrier density suppresses the nonradiative behavior of PDs. The results in this study are readily interpreted directly from CL images and represent a significant advancement in nanoscale PD analysis.