Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Emeritus Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 164
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Optical properties of bulk‐like GaN nanorods grown on Si(111) substrates by rf‐plasma assisted molecular beam epitaxy

physica status solidi (c) Wiley 7:7‐8 (2010) 2211-2213

Authors:

Young S Park, TW Kang, Hyunsik Im, Mark J Holmes, Robert A Taylor
More details from the publisher
More details

Strongly coupled single quantum dot in a photonic crystal waveguide cavity

(2010)

Authors:

FSF Brossard, XL Xu, DA Williams, M Hadjipanayi, M Hopkinson, X Wang, RA Taylor
More details from the publisher

Quantum confined Stark effect of InGaN/GaN multi-quantum disks grown on top of GaN nanorods.

Nanotechnology 21:11 (2010) 115401

Authors:

Young S Park, Mark J Holmes, Tae W Kang, Robert A Taylor

Abstract:

We have investigated, using micro-photoluminescence, the quantum confined Stark effect in an In(x)Ga(1-x)N/GaN multi-quantum disk structure at the tip of a single GaN nanorod. A strong and sharp emission line from the In(x)Ga(1-x)N/GaN quantum disks near 3.26 eV was observed. The peak energy of the emission line was observed to blue-shift with increasing excitation power, indicating a quantum confined Stark effect. Furthermore, both the blue-shift and the intensity of the emission saturate with increasing excitation power. The temperature-dependence of the 3.26 eV emission line has also been investigated.
More details from the publisher
More details

Quantum confined Stark effect of InGaN/GaN multi-quantum disks grown on top of GaN nanorods

Nanotechnology 21:11 (2010)

Authors:

YS Park, MJ Holmes, TW Kang, RA Taylor

Abstract:

We have investigated, using micro-photoluminescence, the quantum confined Stark effect in an InxGa1 - xN/GaN multi-quantum disk structure at the tip of a single GaN nanorod. A strong and sharp emission line from the InxGa1 - xN/GaN quantum disks near 3.26eV was observed. The peak energy of the emission line was observed to blue-shift with increasing excitation power, indicating a quantum confined Stark effect. Furthermore, both the blue-shift and the intensity of the emission saturate with increasing excitation power. The temperature-dependence of the 3.26eV emission line has also been investigated. © 2010 IOP Publishing Ltd.
More details from the publisher

Cavity Enhancement of single quantum dot emission in the blue

Nanoscale Research Letters 5:3 (2010) 608-612

Authors:

RA Taylor, AF Jarjour, DP Collins, MJ Holmes, RA Oliver, MJ Kappers, CJ Humphreys

Abstract:

Cavity-enhanced single-photon emission in the blue spectral region was measured from single InGaN/GaN quantum dots. The low-Q microcavities used were characterized using micro-reflectance spectroscopy where the source was the enhanced blue output from a photonic crystal fibre. Micro-photoluminescence was observed from several cavities and found to be ~10 times stronger than typical InGaN quantum dot emission without a cavity. The measurements were performed using non-linear excitation spectroscopy in order to suppress the background emission from the underlying wetting layer. © The Author(s) 2009.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet