Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Mapping cavity modes of ZnO nanobelts

Applied Physics Letters 94:23 (2009)

Authors:

X Xu, FSF Brossard, DA Williams, DP Collins, MJ Holmes, RA Taylor, X Zhang

Abstract:

ZnO nanostructures attract current interest because they have the potential to implement cavity quantum electrodynamics at room temperature. We report a photoluminescence mapping of ZnO nanobelts both at room temperature and 4.2 K. The multicavity modes were observed all over the belt surface, which were induced by Fabry-Ṕrot interference. The emission from the belt surface is enhanced at both the ends and the sides of the belt, and is highly linearly polarized in the direction perpendicular to the long axis of the belt. The results are explained using finite-difference time-domain simulations. © 2009 American Institute of Physics.
More details from the publisher

Two-photon autocorrelation measurements on a single InGaN/GaN quantum dot.

Nanotechnology 20:24 (2009) 245702

Authors:

Daniel Collins, Anas Jarjour, Maria Hadjipanayi, Robert Taylor, Rachel Oliver, Menno Kappers, Colin Humphreys, Abbes Tahraoui

Abstract:

We report on the use of interferometric autocorrelation measurements to investigate the non-linear absorption processes evident in single InGaN/GaN quantum dots. The near quadratic excitation intensity dependence of the photoluminescence signal in conjunction with the asymmetric collinear autocorrelation trace unambiguously confirms the process as being one involving two photons via an intermediate virtual state. These results highlight the inherently non-linear optical properties of these structures.
More details from the publisher
More details
More details

Optical properties of Er3+ in fullerenes and in β-PbF2 single-crystals

Optical Materials 32:1 (2009) 251-256

Authors:

G Dantelle, A Tiwari, R Rahman, SR Plant, K Porfyrakis, M Mortier, RA Taylor, GAD Briggs

Abstract:

With the aim of providing a thorough description of the optical properties of Er3+-doped endohedral fullerenes, we studied their characteristics in the light of those of well-known Er3+-doped β-PbF2 single-crystals. Various Er3+-doped endohedral fullerenes were considered: Er2C2@C82, where the Er2C2 group is encapsulated inside a cage of 82 carbon atoms and the Er3-xScxN@C80 (x = 0, 1 and 2) family, where the Er3N, Er2ScN and ErSc2N clusters are trapped in a 80 carbon atom cage. In this article, we discuss the absorption and photoluminescence of trivalent erbium ions in fullerenes and in β-PbF2 crystals. The extinction coefficient of Er3N@C80 was found to be 4.8 (±0.5) × 103 mol/l-1 cm-1 at 540 nm, due to the C80 cage absorbance. Even in a saturated fullerene solution, the absorption of Er3+ encapsulated inside a C80 cage cannot be observed at room temperature. We suggest that this is due to an insufficient number of Er3+ ions in the solution and their low absorption cross-section. Low temperature photoluminescence measurements show that the line width of Er3+ in a carbon cage, dissolved in a polycrystalline solvent, is similar to the one of Er3+ in β-PbF2 single-crystals. The quantum efficiency of Er3+ at 1.5 μm in fullerenes is four orders of magnitude lower than that for Er3+ in crystals, due to very efficient non-radiative decay processes. Molecular vibrations of the cage might be responsible for those rapid non-radiative de-excitations. © 2009 Elsevier B.V. All rights reserved.
More details from the publisher

Acuminated fluorescence of Er3+ centres in endohedral fullerenes through the incarceration of a carbide cluster

CHEMICAL PHYSICS LETTERS 476:1-3 (2009) 41-45

Authors:

Simon R Plant, Geraldine Dantelle, Yasuhiro Ito, Tsz Cheong Ng, Arzhang Ardavan, Hisanori Shinohara, Robert A Taylor, G Andrew D Briggs, Kyriakos Porfyrakis
More details from the publisher

Design of leaky modes of two-dimensional photonic crystal slabs to enhance the luminescence from Er3N@C80 fullerenes

OPTICS COMMUNICATIONS 282:17 (2009) 3637-3640

Authors:

Yiling Qi, Anas F Jarjour, Xu Wang, Robert A Taylor, Guoquan Zhang
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • Current page 46
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet