Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Cosmological inference from within the peculiar local universe

(2020)

Authors:

Roya Mohayaee, Mohamed Rameez, Subir Sarkar
More details from the publisher
Details from ArXiV

Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Years of Data from the IceCube Observatory

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

Authors:

H Bagherpour, C Argüelles, J Auffenberg, T Anderson, I Ansseau, P Backes, G Anton, S Axani, X Bai, E Bernardini, DZ Besson, E Blaufuss, D Bindig, S BenZvi, D Berley, JB Tjus, G Binder, S Blot, J Brostean-Kaiser, RS Busse, D Chirkin, A Burgman, J Buscher, T Carver, E Cheung

Abstract:

The measurement of diffuse PeV gamma-ray emission from the Galactic plane would provide information about the energy spectrum and propagation of Galactic cosmic rays, and the detection of a point-like source of PeV gamma rays would be strong evidence for a Galactic source capable of accelerating cosmic rays up to at least a few PeV. This paper presents several un-binned maximum likelihood searches for PeV gamma rays in the Southern Hemisphere using 5 years of data from the IceTop air shower surface detector and the in-ice array of the IceCube Observatory. The combination of both detectors takes advantage of the low muon content and deep shower maximum of gamma-ray air showers, and provides excellent sensitivity to gamma rays between $\sim$0.6 PeV and 100 PeV. Our measurements of point-like and diffuse Galactic emission of PeV gamma rays are consistent with background, so we constrain the angle-integrated diffuse gamma-ray flux from the Galactic Plane at 2 PeV to $2.61 \times 10^{-19}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$ at 90% confidence, assuming an E$^{-3}$ spectrum, and we estimate 90% upper limits on point-like emission at 2 PeV between 10$^{-21}$ - 10$^{-20}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$ for an E$^{-2}$ spectrum, depending on declination. Furthermore, we exclude unbroken power-law emission up to 2 PeV for several TeV gamma-ray sources observed by H.E.S.S., and calculate upper limits on the energy cutoffs of these sources at 90% confidence. We also find no PeV gamma rays correlated with neutrinos from IceCube's high-energy starting event sample. These are currently the strongest constraints on PeV gamma-ray emission.
More details from the publisher
More details
Details from ArXiV

A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society (2020)

Authors:

GW Sullivan, T Stürwald, K Tollefson, T Stuttard, L Tomankova, A Terliuk, F Tenholt, I Taboada, S Tilav, M Tselengidou, S Toscano, CF Turley, A Turcati, R Turcotte, C Tönnis, A Trettin, CF Tung, D Tosi, J Vandenbroucke, MAU Elorrieta, NV Eijndhoven, WV Driessche, S Vanheule, E Unger, M Usner

Abstract:

We present two searches for IceCube neutrino events coincident with 28 fast radio bursts (FRBs) and one repeating FRB. The first improves upon a previous IceCube analysis -- searching for spatial and temporal correlation of events with FRBs at energies greater than roughly 50 GeV -- by increasing the effective area by an order of magnitude. The second is a search for temporal correlation of MeV neutrino events with FRBs. No significant correlation is found in either search, therefore, we set upper limits on the time-integrated neutrino flux emitted by FRBs for a range of emission timescales less than one day. These are the first limits on FRB neutrino emission at the MeV scale, and the limits set at higher energies are an order-of-magnitude improvement over those set by any neutrino telescope.
More details from the publisher
More details
More details
Details from ArXiV

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

Physical Review Letters American Physical Society (2020)

Authors:

S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, I Safa, SES Herrera, A Sandrock, J Sandroos, M Santander, SUBIR Sarkar, Subir SARKAR, K Satalecka, M Schaufel, H Schieler, P Schlunder, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, S Seunarine

Abstract:

This paper presents the results from point-like neutrino source searches using ten years of IceCube data collected between Apr.~6, 2008 and Jul.~10, 2018. We evaluate the significance of an astrophysical signal from a point-like source looking for an excess of clustered neutrino events with energies typically above $\sim1\,$TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the Northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of $2.9\,\sigma$ after accounting for statistical trials. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the Northern catalog are inconsistent with background at 3.3$\,\sigma$ significance. These results, all based on searches for a cumulative neutrino signal integrated over the ten years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.
More details from the publisher
More details
More details
Details from ArXiV

Design and Performance of the first IceAct Demonstrator at the South Pole

Journal of Instrumentation IOP Publishing (2020)

Authors:

GW Sullivan, I Taboada, A Taketa, S Ter-Antonyan, HKM Tanaka, F Tenholt, A Terliuk, S Tilav, K Tollefson, L Tomankova, C Tönnis, S Toscano, D Tosi, M Tselengidou, A Turcati, A Trettin, CF Tung, R Turcotte, CF Turley, MAU Elorrieta, B Ty, E Unger, J Vandenbroucke, M Usner, WV Driessche

Abstract:

In this paper we describe the first results of a compact imaging air-Cherenkov telescope, IceAct, operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 130
  • Page 131
  • Page 132
  • Page 133
  • Current page 134
  • Page 135
  • Page 136
  • Page 137
  • Page 138
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet