Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data

(2017)

Authors:

Amel Durakovic, Paul Hunt, Suvodip Mukherjee, Subir Sarkar, Tarun Souradeep
More details from the publisher

Neutrino Astronomy in the IceCube Era

Sissa Medialab Srl (2017) 004
More details from the publisher

Multiwavelength follow-up of a rare IceCube neutrino multiplet

Astronomy and Astrophysics 607 (2017)

Authors:

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, I Al Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, KH Becker, S Benzvi, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, S Bron, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAM De André, C De Clercq, E Del Pino Rosendo, H Dembinski, S De Ridder, P Desiati, KD De Vries, G De Wasseige, M De With, T Deyoung, V Di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, T Glauch, T Glüsenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack

Abstract:

On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data

Astrophysical Journal University of Chicago Press 849:1 (2017) ARTN 67

Authors:

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, I Al Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, C Arguelles, J Auffenberg, S Axani, H Bagherpour, X Bai, JP Barron, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Borner, F Bos, D Bose, S Boeser, O Botner, J Bourbeau, F Bradascio, J Braun, L Brayeur, M Brenzke, H-P Bretz, S Bron, A Burgman, T Carver, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAM de Andre, C De Clercq, JJ DeLaunay, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Diaz-Velez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkmanm, B Eberhardt, T Ehrhardt, B Eichmann, P Ellerm, PA Evenson, S Fahey, AR Fazely, J Felde, K Filimonov, C Finley, S Flis, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, T Glauch, T Glusenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack, A Hallgren, F Halzen, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hills, KD Hoffman, R Hoffmann, B Hokanson-Fasig, K Hoshina, F Huang, M Huber, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJP Jones, P Kalacynskim, W Kang, A Kappes, T Karg, A Karle, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, L Kopke, C Kopper, S Kopper, JP Koschinsky, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Kriickl, J Kunnenu, S Kunwar, N Kurahashi, T Kuwabara, A Kyriacou, M Labare, JL Lanfranchim, MJ Larson, F Lauber, D Lennarz, M Lesiak-Bzdak, M Leuermann, QR Liu, L Lu, J Lunemann, W Luszczak, J Madsen, G Maggi, KBM Mahn, S Mancina, R Maruyamau, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, T Menne, G Merino, T Meures, S Miarecki, J Micallef, G Momente, T Montaruli, RW Moore, M Moulai, R Nahnhauer, P Nakarmi, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, AO Pollmann, A Olivas, A O'Murchadha, T Palczewski, H Pandya, DV Pankova, P Peiffer, JA Pepper, CPDL Heros, D Pieloth, E Pinat, M Plums, PB Price, GT Przybylski, C Raab, L Radel, M Rameez, K Rawlins, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, S Robertson, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk, T Salzer, SES Herrera, A Sandrock, J Sandroos, S Sarkar, S Sarkar, K Satalecka, P Schlunder, T Schmidt, A Schneider, S Schoenen, S Schoneberg, L Schumacher, D Seckel, S Seunarine, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, T Stanev, A Stasik, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stossl, NL Strotjohann, GW Sullivan, M Sutherland, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, CF Tung, A Turcati, CF Turley, B Ty, E Unger, M Usner, J Vandenbroucke, W Van Driessche, N van Eijndhoven, S Vanheule, J van Santen, MI Vehring, E Vogel, M Vraeghe, C Walck, A Wallace, M Wallraffm, FD Wandler, N Wandkowsky, A Waza, C Weaver, MJ Weiss, C Wendt, S Westerhoff, BJ Whelan, S Wickmann, K Wiebem, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, J Wood, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, T Yuan, M Zoll, I Collaboration
More details from the publisher
Details from ORA
More details
Details from ArXiV

Multi-messenger Observations of a Binary Neutron Star Merger

Astrophysical Journal Letters American Astronomical Society 848 (2017) L12-L12

Abstract:

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼1.7s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40+8−8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M⊙. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼40Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼9 and ∼16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 132
  • Page 133
  • Page 134
  • Page 135
  • Current page 136
  • Page 137
  • Page 138
  • Page 139
  • Page 140
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet