The IceCube realtime alert system
Astroparticle Physics Elsevier 92 (2017) 30-41
Abstract:
Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.Improved Detection of Supernovae with the IceCube Observatory
ArXiv 1704.03823 (2017)
PINGU: a vision for neutrino and particle physics at the South Pole
IOP Publishing 44:5 (2017) 054006
Abstract:
The Precision IceCube Next Generation Upgrade (PINGU) is a proposed lowenergy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters Θ23 and Δm232, including the octant of Θ23 for a wide range of values, and determine the neutrino mass ordering at 3σ median significance within five years of operation. PINGU's high precision measurement of the rate of nt appearance will provide essential tests of the unitarity of the 3 ×3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.High redshift radio galaxies and divergence from the CMB dipole
(2017)
Search for annihilating dark matter in the Sun with 3 years of IceCube data: IceCube Collaboration
European Physical Journal C 77:3 (2017)