Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Search for annihilating dark matter in the Sun with 3 years of IceCube data: IceCube Collaboration

European Physical Journal C 77:3 (2017)

Authors:

MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argüelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, J BeckerTjus, KH Becker, S BenZvi, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, S Blot, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, HP Bretz, S Bron, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, DF Cowen, R Cross, M Day, JPAM de André, C De Clercq, E delPinoRosendo, H Dembinski, S De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Díaz-Vélez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, PA Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, CC Fösig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, T Glauch, T Glüsenkamp

Abstract:

© 2017, The Author(s). We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun’s core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies > 100 GeV while its low-energy infill array DeepCore extends this to > 10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrino events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46 × 10 - 5  pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ + τ - particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.
More details from the publisher

The IceCube Neutrino Observatory: instrumentation and online systems

Journal of Instrumentation IOP Publishing 12:3 (2017) P03012

Authors:

MG Aartsen, M Ackermann, J Adams, Subir Sarkar, Et Et al.

Abstract:

The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Exploring the Universe with Neutrinos: Recent Results from IceCube

ArXiv 1702.05244 (2017)
Details from ArXiV

First search for dark matter annihilations in the Earth with the IceCube detector

European Physical Journal C Springer Berlin Heidelberg 2017:77 (2017) 82

Authors:

MG Aartsen, K Abraham, M Ackermann, Subir Sarkar, Et Et al.

Abstract:

We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube’s predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP–nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.
More details from the publisher
Details from ORA
More details
Details from ArXiV

All-sky search for time-integrated neutrino emission from astrophysical sources with 7 yr of IceCube data

Astrophysical Journal Institute of Physics 835:2 (2017) 151

Authors:

K Abraham, M Ackermann, Subir Sarkar

Abstract:

Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis in the northern sky is now significantly below E 2 v doφ/dE v = 10 -12 TeV cm -2 s -1 , on average 38% lower than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 149
  • Page 150
  • Page 151
  • Page 152
  • Current page 153
  • Page 154
  • Page 155
  • Page 156
  • Page 157
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet