Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

Journal of Cosmology and Astroparticle Physics IOP PUblishing 2016:04 (2016) 022-022

Authors:

Mg Aartsen, K Abraham, M Ackermann, Subir Sarkar, Et al.

Abstract:

We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Neutrino oscillation studies with IceCube-DeepCore

Nuclear Physics B Elsevier 908 (2016) 161-177

Authors:

MG Aartsen, K Abraham, M Ackermann, Subir Sarkar

Abstract:

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.
More details from the publisher
Details from ORA
More details

Footprints of Loop I on cosmic microwave background maps

Journal of Cosmology and Astroparticle Physics IOP Publishing 2016:3 (2016) 023

Authors:

Sv Hausegger, H Liu, P Mertsch, Subir Sarkar

Abstract:

Cosmology has made enormous progress through studies of the cosmic microwave background, however the subtle signals being now sought such as B-mode polarisation due to primordial gravitational waves are increasingly hard to disentangle from residual Galactic foregrounds in the derived CMB maps. We revisit our finding that on large angular scales there are traces of the nearby old supernova remnant Loop I in the WMAP 9-year map of the CMB and confirm this with the new SMICA map from the Planck satellite.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Searches for relativistic magnetic monopoles in IceCube

European Physical Journal C (2016)

Authors:

MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, I Ansseau, M Archinger, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, JB Tjus, K-H Becker, E Beiser, ML Benabderrahmane, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, M Börner, F Bos, D Bose, S Böser, O Botner, J Braun, L Brayeur, H-P Bretz, N Buzinsky, J Casey, M Casier, E Cheung, D Chirkin, A Christov, K Clark

Abstract:

© 2016, The Author(s).Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic ((Formula presented.)) and mildly relativistic ((Formula presented.)) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above (Formula presented.) the monopole flux is constrained down to a level of (Formula presented.). This is an improvement of almost two orders of magnitude over previous limits.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The prompt atmospheric neutrino flux in the light of LHCb

JHEP Springer Berlin Heidelberg 02:2 (2016) 130

Authors:

R Gauld, J Rojo, L Rottoli, Subir Sarkar, J Talbert

Abstract:

The recent observation of very high energy cosmic neutrinos by IceCube heralds the beginning of neutrino astronomy. At these energies, the dominant background to the astrophysical signal is the flux of `prompt' neutrinos, arising from the decay of charmed mesons produced by cosmic ray collisions in the atmosphere. In this work we provide predictions for the prompt atmospheric neutrino flux in the framework of perturbative QCD, using state-of-the-art Monte Carlo event generators. Our calculation includes the constraints set by charm production measurements from the LHCb experiment at 7 TeV, and has been recently validated with the corresponding 13 TeV data. Our results for the prompt flux are a factor of about 2 below the previous benchmark calculation, in general agreement with two other recent estimates, and with an improved estimate of the uncertainty. This alleviates the existing tension between the theoretical prediction and IceCube limits, and suggests that a direct direction of the prompt flux is imminent.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 153
  • Page 154
  • Page 155
  • Page 156
  • Current page 157
  • Page 158
  • Page 159
  • Page 160
  • Page 161
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet