Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube
Physical Review D American Physical Society D90:10 (2014) 102002-102002
Abstract:
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$\,M$_\odot$c$^2$ at $\sim 150$\,Hz with $\sim 60$\,ms duration, and high-energy neutrino emission of $10^{51}$\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 \times 10^{-2}$\,Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.Searches for extended and point-like neutrino sources with four years of IceCube data
Astrophysical Journal IOP Publishing 796:2 (2014) 109
Abstract:
We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector. The total livetime of the combined dataset is 1,373 days. For an E$^{-2}$ spectrum the median sensitivity at 90\% C.L. is $\sim 10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 1 TeV$-$1 PeV in the northern sky and $\sim 10^{-11}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 100 TeV $-$ 100 PeV in the southern sky. The sensitivity has improved from both the additional year of data and the introduction of improved reconstructions compared to previous publications. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update results of searches for neutrino emission from stacked catalogs of sources, and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.Observation of high-energy astrophysical neutrinos in three years of IceCube data
Physical Review Letters American Physical Society 113:10 (2014) 101101-101101
Abstract:
A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.A hadronic explanation of the lepton anomaly
Journal of Physics: Conference Series IOP Publishing 531:1 (2014) 012008-012008