Predictions for the cosmogenic neutrino flux in light of new data from the Pierre Auger Observatory
Physical Review D - Particles, Fields, Gravitation and Cosmology 76:12 (2007)
Abstract:
The Pierre Auger Observatory (PAO) has measured the spectrum and composition of the ultrahigh energy cosmic rays with unprecedented precision. We use these measurements to constrain their spectrum and composition as injected from their sources and, in turn, use these results to estimate the spectrum of cosmogenic neutrinos generated in their propagation through intergalactic space. We find that the PAO spectrum and elongation rate measurements can be well fitted if the injected cosmic rays consist entirely of nuclei with masses in the intermediate (carbon, nitrogen, or oxygen) to heavy (iron, silicon) range. A mixture of protons and heavier species is also acceptable but (on the basis of existing hadronic interaction models) injection of pure light nuclei (protons, helium) results in unacceptable fits to the new elongation rate data. The expected spectrum of cosmogenic neutrinos can vary considerably, depending on the precise spectrum and chemical composition injected from the cosmic ray sources. In the models where heavy nuclei dominate the cosmic ray spectrum and few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can be suppressed by up to 2 orders of magnitude relative to the all-proton prediction, making its detection beyond the reach of current and planned neutrino telescopes. Other models consistent with the data, however, are proton-dominated with only a small (1%-10%) admixture of heavy nuclei and predict an associated cosmogenic flux within the reach of upcoming experiments. Thus a detection or nondetection of cosmogenic neutrinos can assist in discriminating between these possibilities. © 2007 The American Physical Society.Upper limit on the cosmic-ray photon flux above 10^19 eV using the surface detector of the Pierre Auger Observatory
ArXiv 0712.1147 (2007)
Abstract:
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8*10^-3, 2.5*10^-3, and 2.2*10^-3 km^-2 sr^-1 yr^-1 above 10^19 eV, 2*10^19 eV, and 4*10^19 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted by the Auger Observatory to calibrate the shower energy is not strongly biased by a contamination from photons.Correlation of the highest-energy cosmic rays with nearby extragalactic objects.
Science 318:5852 (2007) 938-943
Abstract:
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest-energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.Is the evidence for dark energy secure?
ArXiv 0710.5307 (2007)