Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

Physical Review D - Particles, Fields, Gravitation and Cosmology 75:10 (2007)

Authors:

A Achterberg, M Ackermann, J Adams, J Ahrens, K Andeen, DW Atlee, JN Bahcall, X Bai, B Baret, SW Barwick, R Bay, K Beattie, T Becka, JK Becker, KH Becker, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, A Bouchta, J Braun, C Burgess, T Burgess, T Castermans, D Chirkin, B Christy, J Clem, DF Cowen, MV D'Agostino, A Davour, CT Day, C De Clercq, L Demirörs, F Descamps, P Desiati, T DeYoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, PA Evenson, O Fadiran, AR Fazely, T Feser, K Filimonov, BD Fox, TK Gaisser, J Gallagher, R Ganugapati, H Geenen, L Gerhardt, A Goldschmidt, JA Goodman, R Gozzini, S Grullon, A Groß, RM Gunasingha, M Gurtner, A Hallgren, F Halzen, K Han, K Hanson, D Hardtke, R Hardtke, T Harenberg, JE Hart, T Hauschildt, D Hays, J Heise, K Helbing, M Hellwig, P Herquet, GC Hill, J Hodges, KD Hoffman, B Hommez, K Hoshina, D Hubert, B Hughey, PO Hulth, K Hultqvist, S Hundertmark, JP Hülß, A Ishihara, J Jacobsen, GS Japaridze, H Johansson, A Jones, JM Joseph

Abstract:

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=(E1TeV) γ•dΦdE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν̄μ0+Φντ+ν ̄τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν̄μ0/ Φντ+ν̄τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν̄μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties. © 2007 The American Physical Society.
More details from the publisher
More details
Details from ArXiV

Racetrack inflation and assisted moduli stabilisation

Nuclear Physics B 766:1-3 (2007) 1-20

Authors:

Z Lalak, GG Ross, S Sarkar

Abstract:

We present a model of inflation based on a racetrack model without flux stabilization. The initial conditions are set automatically through topological inflation. This ensures that the dilaton is not swept to weak coupling through either thermal effects or fast roll. Including the effect of non-dilaton fields we find that moduli provide natural candidates for the inflaton. The resulting potential generates slow-roll inflation without the need to fine-tune parameters. The energy scale of inflation must be near the GUT scale and the scalar density perturbation generated has a spectrum consistent with WMAP data. © 2006.
More details from the publisher
More details
Details from ArXiV

High-energy neutrinos from astrophysical accelerators of cosmic ray nuclei

ArXiv astro-ph/0703001 (2007)

Authors:

Luis A Anchordoqui, Dan Hooper, Subir Sarkar, Andrew M Taylor

Abstract:

Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant number of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma-ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalised to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube.
Details from ArXiV
More details from the publisher

High-energy neutrinos from astrophysical accelerators of cosmic ray nuclei

(2007)

Authors:

Luis A Anchordoqui, Dan Hooper, Subir Sarkar, Andrew M Taylor
More details from the publisher

Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

Astroparticle Physics 27:4 (2007) 244-253

Authors:

J Abraham, M Aglietta, C Aguirre, D Allard, I Allekotte, P Allison, C Alvarez, J Alvarez-Muñiz, M Ambrosio, L Anchordoqui, JC Anjos, C Aramo, K Arisaka, E Armengaud, F Arneodo, F Arqueros, T Asch, H Asorey, BS Atulugama, J Aublin, M Ave, G Avila, J Bacelar, T Bäcker, D Badagnani, AF Barbosa, HMJ Barbosa, M Barkhausen, D Barnhill, SLC Barroso, P Bauleo, J Beatty, T Beau, BR Becker, KH Becker, JA Bellido, S BenZvi, C Berat, T Bergmann, P Bernardini, X Bertou, PL Biermann, P Billoir, O Blanch-Bigas, F Blanco, P Blasi, C Bleve, H Blümer, P Boghrat, M Boháčová, C Bonifazi, R Bonino, M Boratav, J Brack, JM Brunet, P Buchholz, NG Busca, KS Caballero-Mora, B Cai, DV Camin, JN Capdevielle, R Caruso, A Castellina, G Cataldi, L Cazón, R Cester, J Chauvin, A Chiavassa, JA Chinellato, A Chou, J Chye, D Claes, PDJ Clark, RW Clay, SB Clay, B Connolly, A Cordier, U Cotti, S Coutu, CE Covault, J Cronin, S Dagoret-Campagne, TD Quang, P Darriulat, K Daumiller, BR Dawson, RM de Almeida, LA de Carvalho, C De Donato, SJ de Jong, WJM de Mello, JRT de Mello Neto, I De Mitri, MAL de Oliveira, V de Souza, L del Peral, O Deligny, AD Selva, CD Fratte, H Dembinski

Abstract:

Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius A. Also the events detected simultaneously by the surface and fluorescence detectors (the 'hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction. © 2006 Elsevier B.V. All rights reserved.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 207
  • Page 208
  • Page 209
  • Page 210
  • Current page 211
  • Page 212
  • Page 213
  • Page 214
  • Page 215
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet