Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Is the evidence for dark energy secure?

(2007)
More details from the publisher

Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits

ArXiv 0710.5303 (2007)

Authors:

Amanda Cooper-Sarkar, Subir Sarkar

Abstract:

We have updated predictions for high energy neutrino and antineutrino charged current cross-sections within the conventional DGLAP formalism of NLO QCD using a modern PDF fit to HERA data, which also accounts in a systematic way for PDF uncertainties deriving from both model uncertainties and from the experimental uncertainties of the input data sets. Furthermore the PDFs are determined using an improved treatment of heavy quark thresholds. A measurement of the neutrino cross-section much below these predictions would signal the need for extension of the conventional formalism as in BFKL resummation, or even gluon recombination effects as in the colour glass condensate model.
Details from ArXiV
More details from the publisher
More details

Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits

(2007)

Authors:

Amanda Cooper-Sarkar, Subir Sarkar
More details from the publisher

Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory

(2007)

Authors:

Luis A Anchordoqui, Haim Goldberg, Dan Hooper, Subir Sarkar, Andrew M Taylor
More details from the publisher

Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

Physical Review D - Particles, Fields, Gravitation and Cosmology 76:4 (2007)

Authors:

A Achterberg, M Ackermann, J Adams, J Ahrens, K Andeen, J Auffenberg, X Bai, B Baret, SW Barwick, R Bay, K Beattie, T Becka, JK Becker, KH Becker, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, A Bouchta, J Braun, T Burgess, T Castermans, D Chirkin, B Christy, J Clem, DF Cowen, MV D'Agostino, A Davour, CT Day, C De Clercq, L Demirörs, F Descamps, P Desiati, T DeYoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, PA Evenson, O Fadiran, AR Fazely, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, R Ganugapati, H Geenen, L Gerhardt, A Goldschmidt, JA Goodman, R Gozzini, T Griesel, A Groß, S Grullon, RM Gunasingha, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, D Hardtke, R Hardtke, JE Hart, Y Hasegawa, T Hauschildt, D Hays, J Heise, K Helbing, M Hellwig, P Herquet, GC Hill, J Hodges, KD Hoffman, B Hommez, K Hoshina, D Hubert, B Hughey, JP Hülß, PO Hulth, K Hultqvist, S Hundertmark, M Inaba, A Ishihara, J Jacobsen

Abstract:

A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent live time of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with nonthermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E2Φ90%C.L.<7.4×10-8GeVcm-2s-1sr-1 is placed on the diffuse flux of muon neutrinos with a Φ E-2 spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive Φ E-2 diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different from Φ E-2. © 2007 The American Physical Society.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 204
  • Page 205
  • Page 206
  • Page 207
  • Current page 208
  • Page 209
  • Page 210
  • Page 211
  • Page 212
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet