Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Quantifying information scrambling via Classical Shadow Tomography on Programmable Quantum Simulators

(2022)

Authors:

Max McGinley, Sebastian Leontica, Samuel J Garratt, Jovan Jovanovic, Steven H Simon
More details from the publisher

Excitonic fractional quantum Hall hierarchy in moire heterostructures

PHYSICAL REVIEW B 105:23 (2022) ARTN 235121

Authors:

Yves H Kwan, Yichen Hu, Steven H Simon, SA Parameswaran
More details from the publisher
More details

Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene

Physical Review X American Physical Society 11:4 (2021) 041063

Authors:

Yves Kwan, Glenn Wagner, Tomohiro Soejima, Michael P Zaletel, Steven H Simon, Siddharth A Parameswaran, Nick Bultinick

Abstract:

We study magic angle graphene in the presence of both strain and particle-hole symmetry breaking due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction and substrate potentials, and explore a comprehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the 'incommensurate Kekulé spiral' (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moiré translation symmetries, but preserves a modified translation symmetry T^′ -- which simultaneously shifts the spatial coordinates and rotates the U(1) angle which characterizes the spontaneous inter-valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Skyrmions in twisted bilayer graphene: stability, pairing, and crystallization

(2021)

Authors:

Yves H Kwan, Glenn Wagner, Nick Bultinck, Steven H Simon, SA Parameswaran
More details from the publisher

s-wave paired electron and hole composite fermion trial state for quantum Hall bilayers with ν=1

Physical Review Letters American Physical Society 127 (2021) 246803

Abstract:

We introduce a new variational wave function for a quantum Hall bilayer at total filling νT=1, which is based on s-wave BCS pairing between electron composite fermions in one layer and hole composite fermions in the other. In addition, we reexamine a trial wave function based on p-wave BCS pairing between electron composite fermions in both layers. We compute the overlap of the optimized trial functions with the ground state from exact diagonalization calculations of up to 14 electrons in a spherical geometry, and we find excellent agreement over the entire range of values of the ratio between the layer separation and the magnetic length. The s-wave trial wave function naturally allows for charge imbalance between the layers and provides important insights into how the physics at large interlayer separations crosses over to that at small separations in a fashion analogous to the BEC-BCS crossover.

More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet