Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Exciton band topology in spontaneous quantum anomalous Hall insulators: applications to twisted bilayer graphene

Physical Review Letters American Physical Society 126:13 (2021) 137601

Authors:

Yves H Kwan, Yichen Hu, Steven Simon, SA Parameswaran

Abstract:

We uncover topological features of neutral particle-hole pair excitations of correlated quantum anomalous Hall (QAH) insulators whose approximately flat conduction and valence bands have equal and opposite nonzero Chern number. Using an exactly solvable model we show that the underlying band topology affects both the center-of-mass and relative motion of particle-hole bound states. This leads to the formation of topological exciton bands whose features are robust to nonuniformity of both the dispersion and the Berry curvature. We apply these ideas to recently reported broken-symmetry spontaneous QAH insulators in substrate aligned magic-angle twisted bilayer graphene.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

From anyons to Majoranas

(2021)

Authors:

Jay Sau, Steven Simon, Smitha Vishveshwara, James R Williams
More details from the publisher

Statistical mechanics of dimers on quasiperiodic Ammann-Beenker tilings

(2021)

Authors:

Jerome Lloyd, Sounak Biswas, Steven H Simon, SA Parameswaran, Felix Flicker
More details from the publisher

A microscopic Ginzburg--Landau theory and singlet ordering in Sr$_2$RuO$_4$

(2020)

Authors:

Glenn Wagner, Henrik S Røising, Felix Flicker, Steven H Simon
More details from the publisher

Contrasting lattice geometry dependent versus independent quantities: Ramifications for Berry curvature, energy gaps, and dynamics

Physical Review B: Condensed Matter and Materials Physics American Physical Society 102 (2020) 165148

Authors:

Steven Simon, Mark Rudner

Abstract:

In the tight-binding description of electronic, photonic, or cold atomic dynamics in a periodic lattice potential, particle motion is described in terms of hopping amplitudes and potentials on an abstract network of discrete sites corresponding to physical orbitals in the lattice. The physical attributes of the orbitals, including their locations in three-dimensional space, are independent pieces of information. In this paper we identify a notion of geometry-independence: any physical quantity or observable that depends only on the tight-binding parameters (and not on the explicit information about the orbital geometry) is said to be “geometry-independent.” The band structure itself, and for example the Chern numbers of the bands in a two-dimensional system, are geometryindependent, while the Bloch-band Berry curvature is geometry-dependent. Careful identification of geometry-dependent versus independent quantities can be used as a novel principle for constraining a variety of results. By extending the notion of geometry-independence to certain classes of interacting systems, where the many-body energy gap is evidently geometry-independent, we shed new light on a hypothesized relation between many-body energy gaps of fractional Chern insulators and the uniformity of Bloch band Berry curvature in the Brillouin zone. We furthermore explore the geometry-dependence of semiclassical wave packet dynamics, and use this principle to show how two different types of Hall response measurements may give markedly different results due to the fact that one is geometry-dependent, while the other is geometry-independent. Similar considerations apply for anomalous thermal Hall response, in both electronic and spin systems.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet