Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Andrei Starinets

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
andrei.starinets@physics.ox.ac.uk
Telephone: 01865 (2)73955
Rudolf Peierls Centre for Theoretical Physics, room 70.09
  • About
  • Research
  • Publications

Viscosity, Black Holes, and Quantum Field Theory

(2007)

Authors:

DT Son, AO Starinets
More details from the publisher

Photon and dilepton production in supersymmetric Yang-Mills plasma

Journal of High Energy Physics 2006:12 (2006)

Authors:

SC Huot, P Kovtun, GD Moore, A Starinets, LG Yaffe

Abstract:

By weakly gauging one of the U(1) subgroups of the R-symmetry group, script N sign = 4 super-Yang-Mills theory can be coupled to electromagnetism, thus allowing a computation of photon production and related phenomena in a QCD-like non-Abelian plasma at both weak and strong coupling. We compute photon and dilepton emission rates from finite temperature script N sign = 4 supersymmetric Yang-Mills plasma both perturbatively at weak coupling to leading order, and non-perturbatively at strong coupling using the AdS/CFT duality conjecture. Comparison of the photo-emission spectra for script N sign = 4 plasma at weak coupling, script N sign = 4 plasma at strong coupling, and QCD at weak coupling reveals several systematic trends which we discuss. We also evaluate the electric conductivity of script N sign = 4 plasma in the strong coupling limit, and to leading-log order at weak coupling. Current-current spectral functions in the strongly coupled theory exhibit hydrodynamic peaks at small frequency, but otherwise show no structure which could be interpreted as well-defined thermal resonances in the high-temperature phase. © SISSA 2006.
More details from the publisher
More details

Photon and dilepton production in supersymmetric Yang-Mills plasma

(2006)

Authors:

Simon Caron-Huot, Pavel Kovtun, Guy Moore, Andrei Starinets, Laurence G Yaffe
More details from the publisher

Transport coefficients of strongly coupled gauge theories: Insights from string theory

European Physical Journal A 29:1 (2006) 77-81

Abstract:

The transport properties of certain strongly coupled thermal gauge theories can be determined from their effective description in terms of gravity or superstring theory duals. Here we provide a short summary of the results for the shear and bulk viscosity, charge diffusion constant, and the speed of sound in supersymmetric strongly interacting plasmas. We also outline a general algorithm for computing transport coefficients in any gravity dual. The algorithm relates the transport coefficients to the coefficients in the quasinormal spectrum of five-dimensional black holes in asymptotically anti de Sitter space.
More details from the publisher
More details

Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory.

Phys Rev Lett 96:13 (2006) 131601

Authors:

Pavel Kovtun, Andrei Starinets

Abstract:

We use the gauge-gravity duality conjecture to compute spectral functions of the stress-energy tensor in finite-temperature N = 4 supersymmetric Yang-Mills theory in the limit of large N(c) and large 't Hooft coupling. The spectral functions exhibit peaks characteristic of hydrodynamic modes at small frequency, and oscillations at intermediate frequency. The nonperturbative spectral functions differ qualitatively from those obtained in perturbation theory. The results may prove useful for lattice studies of transport processes in thermal gauge theories.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet