Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Andrei Starinets

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
andrei.starinets@physics.ox.ac.uk
Telephone: 01865 (2)73955
Rudolf Peierls Centre for Theoretical Physics, room 70.09
  • About
  • Research
  • Publications

The silence of the little strings

Journal of High Energy Physics (2005) 731-755

Authors:

A Parnachev, A Starinets

Abstract:

We study the hydrodynamics of the high-energy phase of Little String Theory. The poles of the retarded two-point function of the stress energy tensor contain information about the speed of sound and the kinetic coefficients, such as shear and bulk viscosity. We compute this two-point function in the dual string theory and analytically continue it to lorentzian signature. We perform an independent check of our results by the lorentzian supergravity calculation in the background of non-extremal NS5-branes. The speed of sound vanishes at the Hagedorn temperature. The ratio of shear viscosity to entropy density is equal to the universal value 1/4π and does not receive α′ corrections. The ratio of bulk viscosity to entropy density equals 1/10π. We also compute the R-charge diffusion constant. In addition to the hydrodynamic singularities, the correlators have an infinite series of finite-gap poles, and a massless pole with zero attenuation. © SISSA 2005.
More details from the publisher
More details

Sound waves in strongly coupled non-conformal gauge theory plasma

(2005)

Authors:

Paolo Benincasa, Alex Buchel, Andrei O Starinets
More details from the publisher

Quasinormal modes and holography

(2005)

Authors:

Pavel K Kovtun, Andrei O Starinets
More details from the publisher

The Silence of the Little Strings

(2005)

Authors:

Andrei Parnachev, Andrei Starinets
More details from the publisher

Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory

Nuclear Physics B 707:1-2 (2005) 56-68

Authors:

A Buchel, JT Liu, AO Starinets

Abstract:

Gauge theory-gravity duality predicts that the shear viscosity of N = 4 supersymmetric SU(Nc) Yang-Mills plasma at temperature T in the limit of large N c and large 't Hooft coupling gYM2Nc is independent of the coupling and equals to πNc2T3 /8. In this paper, we compute the leading correction to the shear viscosity in inverse powers of 't Hooft coupling using the α′-corrected low-energy effective action of type IIB string theory. We also find the correction to the ratio of shear viscosity to the volume entropy density (equal to 1/4π in the limit of infinite coupling). The correction to 1/4π scales as (gYM2Nc) -3/2 with a positive coefficient. © 2004 Elsevier B.V. All rights reserved.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet