Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Rahil Valani

Leverhulme-Peierls Fellow

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
rahil.valani@physics.ox.ac.uk
Telephone: 01865 273997
Rudolf Peierls Centre for Theoretical Physics, room 50.04
Personal website
  • About
  • Publications

Hydrodynamic memory and Quincke rotation

Physical Review Fluids American Physical Society (APS) 10:9 (2025) 093701

Authors:

Jason K Kabarowski, Aditya S Khair, Rahil N Valani
More details from the publisher

Driven transitions between megastable quantized orbits

Chaos, Solitons & Fractals Elsevier BV 198 (2025) 116549

Authors:

Álvaro G López, Rahil N Valani
More details from the publisher
More details

Nematic Order from Phase Synchronization of Shape Oscillations.

Physical review letters 135:6 (2025) 068101

Authors:

Ioannis Hadjifrangiskou, Sumesh P Thampi, Rahil N Valani

Abstract:

We show that a suspension of noninteracting deformable particles subjected to an oscillatory shear flow leads to development of nematic order that arises from the phenomenon of phase synchronization. The synchronized state corresponds to a unique, stable limit cycle confined in the toroidal state space. The limit cycle exists since, unlike rigid particles, deformable particles can modulate aspect ratio, adjust their tumbling rate, and thus achieve phase synchronization. These synchronized regions emerge as Arnold tongues in the parameter space of the driving amplitude and frequency. Considering the rheological implications of ordering dynamics in soft and active matter, our results motivate oscillatory shear flow experiments with deformable particles.
More details from the publisher
More details

Tunneling in a Lorenz-like model for an active wave-particle entity

Physical Review E American Physical Society (APS) 111:3 (2025) 034218

Authors:

Runze Xu, Rahil N Valani
More details from the publisher
More details

Megastable quantization in generalized pilot-wave hydrodynamics

Physical Review E American Physical Society (APS) 111:2 (2025) l022201

Authors:

Álvaro G López, Rahil N Valani
More details from the publisher
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet