Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Rahil Valani

Leverhulme-Peierls Fellow

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
rahil.valani@physics.ox.ac.uk
Telephone: 01865 273997
Rudolf Peierls Centre for Theoretical Physics, room 50.04
Personal website
  • About
  • Publications

Driven transitions between megastable quantized orbits

Chaos Solitons & Fractals Elsevier 198 (2025) 116549

Authors:

Álvaro G López, Rahil N Valani

Abstract:

We consider a nonlinear oscillator with state-dependent time-delay that displays a countably infinite number of nested limit cycle attractors, i.e. megastability. In the low-memory regime, the equation reduces to a self-excited nonlinear oscillator and we use averaging methods to analytically show quasilinear increasing amplitude of the megastable spectrum of quantized quasicircular orbits. We further assign a mechanical energy to each orbit using the Lyapunov energy function and obtain a quadratically increasing energy spectrum and (almost) constant frequency spectrum. We demonstrate transitions between different quantized orbits, i.e. different energy levels, by subjecting the system to an external finite-time harmonic driving. In the absence of external driving force, the oscillator asymptotes towards one of the megastable quantized orbits having a fixed average energy. For a large driving amplitude with frequency close to the limit cycle frequency, resonance drives transitions to higher energy levels. Alternatively, for large driving amplitude with frequency slightly detuned from limit-cycle frequency, beating effects can lead to transitions to lower energy levels. Such driven transitions between quantized orbits form a classical analog of quantum jumps. For excitations to higher energy levels, we show amplitude locking where nearby values of driving amplitudes result in the same response amplitude, i.e. the same final higher energy level. We rationalize this effect based on the basins of different limit cycles in phase space. From a practical viewpoint, our work might find applications in physical and engineering system where controlled transitions between several limit cycles of a multistable dynamical system is desired.
More details from the publisher
More details

Nematic Order from Phase Synchronization of Shape Oscillations

Physical Review Letters American Physical Society (APS) 135:6 (2025) 068101

Authors:

Ioannis Hadjifrangiskou, Sumesh P Thampi, Rahil N Valani

Abstract:

We show that a suspension of noninteracting deformable particles subjected to an oscillatory shear flow leads to development of nematic order that arises from the phenomenon of phase synchronization. The synchronized state corresponds to a unique, stable limit cycle confined in the toroidal state space. The limit cycle exists since, unlike rigid particles, deformable particles can modulate aspect ratio, adjust their tumbling rate, and thus achieve phase synchronization. These synchronized regions emerge as Arnold tongues in the parameter space of the driving amplitude and frequency. Considering the rheological implications of ordering dynamics in soft and active matter, our results motivate oscillatory shear flow experiments with deformable particles.
More details from the publisher
More details
More details

Tunneling in a Lorenz-like model for an active wave-particle entity

Physical Review E American Physical Society (APS) 111:3 (2025) 034218

Authors:

Runze Xu, Rahil N Valani
More details from the publisher
More details

Megastable quantization in generalized pilot-wave hydrodynamics

Physical Review E American Physical Society (APS) 111:2 (2025) l022201

Authors:

Álvaro G López, Rahil N Valani
More details from the publisher
More details
More details

Asymmetric limit cycles within Lorenz chaos induce anomalous mobility for a memory-driven active particle

Physical Review E American Physical Society (APS) 110:5 (2024) l052203

Authors:

Rahil N Valani, Bruno S Dandogbessi
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet