Bifurcations and Dynamics in Inertial Focusing of Particles in Curved Rectangular Ducts
SIAM Journal on Applied Dynamical Systems Society for Industrial & Applied Mathematics (SIAM) 21:4 (2022) 2371-2392
Lorenz-like systems emerging from an integro-differential trajectory equation of a one-dimensional wave-particle entity.
Chaos (Woodbury, N.Y.) 32:2 (2022) 023129
Abstract:
Vertically vibrating a liquid bath can give rise to a self-propelled wave-particle entity on its free surface. The horizontal walking dynamics of this wave-particle entity can be described adequately by an integro-differential trajectory equation. By transforming this integro-differential equation of motion for a one-dimensional wave-particle entity into a system of ordinary differential equations (ODEs), we show the emergence of Lorenz-like dynamical systems for various spatial wave forms of the entity. Specifically, we present and give examples of Lorenz-like dynamical systems that emerge when the wave form gradient is (i) a solution of a linear homogeneous constant coefficient ODE, (ii) a polynomial, and (iii) a periodic function. Understanding the dynamics of the wave-particle entity in terms of Lorenz-like systems may prove to be useful in rationalizing emergent statistical behavior from underlying chaotic dynamics in hydrodynamic quantum analogs of walking droplets. Moreover, the results presented here provide an alternative physical interpretation of various Lorenz-like dynamical systems in terms of the walking dynamics of a wave-particle entity.Anomalous transport of a classical wave-particle entity in a tilted potential.
Physical review. E 105:1 (2022) L012101
Abstract:
A classical wave-particle entity in the form of a millimetric walking droplet can emerge on the free surface of a vertically vibrating liquid bath. Such wave-particle entities have been shown to exhibit hydrodynamic analogs of quantum systems. Using an idealized theoretical model of this wave-particle entity in a tilted potential, we explore its transport behavior. The integro-differential equation of motion governing the dynamics of the wave-particle entity transforms to a Lorenz-like system of ordinary differential equations that drives the particle's velocity. Several anomalous transport regimes such as absolute negative mobility, differential negative mobility, and lock-in regions corresponding to force-independent mobility are observed. These observations motivate experiments in the hydrodynamic walking-droplet system for the experimental realizations of anomalous transport phenomena.Unsteady dynamics of a classical particle-wave entity.
Physical review. E 104:1-2 (2021) 015106
Abstract:
A droplet bouncing on the surface of a vertically vibrating liquid bath can walk horizontally, guided by the waves it generates on each impact. This results in a self-propelled classical particle-wave entity. By using a one-dimensional theoretical pilot-wave model with a generalized wave form, we investigate the dynamics of this particle-wave entity. We employ different spatial wave forms to understand the role played by both wave oscillations and spatial wave decay in the walking dynamics. We observe steady walking motion as well as unsteady motions such as oscillating walking, self-trapped oscillations, and irregular walking. We explore the dynamical and statistical aspects of irregular walking and show an equivalence between the droplet dynamics and the Lorenz system, as well as making connections with the Langevin equation and deterministic diffusion.Stop-and-go locomotion of superwalking droplets.
Physical review. E 103:4-1 (2021) 043102