Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Geometry from quantum temporal correlations

Physical Review A American Physical Society 111:5 (2025) 052438

Authors:

James Fullwood, Vlatko Vedral

Abstract:

In this Letter, we show how Euclidean three-space uniquely emerges from the structure of quantum temporal correlations associated with sequential measurements of Pauli observables on a single qubit. Quite remarkably, the quantum temporal correlations which give rise to geometry are independent of the initial state of the qubit, which we show enables an observer to extract geometric data from sequential measurements without the observer having any knowledge of initial conditions. Such results suggest the plausibility that space itself may emerge from quantum temporal correlations, and we formulate a toy model of such a hypothetical phenomenon.
More details from the publisher
Details from ORA

Reply to comment on: Observation of the quantum equivalence principle for matter-waves

(2025)

Authors:

Or Dobkowski, Barak Trok, Peter Skakunenko, Yonathan Japha, David Groswasser, Maxim Efremov, Chiara Marletto, Ivette Fuentes, Roger Penrose, Vlatko Vedral, Wolfgang P Schleich, Ron Folman
More details from the publisher

Quantum causal inference with extremely light touch

npj Quantum Information Nature Research 11:1 (2025) 54

Authors:

Xiangjing Liu, Yixian Qiu, Oscar Dahlsten, Vlatko Vedral

Abstract:

We give a causal inference scheme using quantum observations alone for a case with both temporal and spatial correlations: a bipartite quantum system with measurements at two times. The protocol determines compatibility with five causal structures distinguished by the direction of causal influence and whether there are initial correlations. We derive and exploit a closed-form expression for the spacetime pseudo-density matrix (PDM) for many times and qubits. This PDM can be determined by light-touch coarse-grained measurements alone. We prove that if there is no signalling between two subsystems, the reduced state of the PDM cannot have negativity, regardless of initial spatial correlations. In addition, the protocol exploits the time asymmetry of the PDM to determine the temporal order. The protocol succeeds for a state with coherence undergoing a fully decohering channel. Thus coherence in the channel is not necessary for the quantum advantage of causal inference from observations alone.
More details from the publisher
Details from ORA

A Matter-Wave Quantum Superposition of Inertial and Constant Acceleration Motions

(2025)
More details from the publisher

Observation of the quantum equivalence principle for matter-waves

(2025)

Authors:

Or Dobkowski, Barak Trok, Peter Skakunenko, Yonathan Japha, David Groswasser, Maxim Efremov, Chiara Marletto, Ivette Fuentes, Roger Penrose, Vlatko Vedral, Wolfgang P Schleich, Ron Folman
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet