Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Geometry from quantum temporal correlations

(2025)

Authors:

James Fullwood, Vlatko Vedral
More details from the publisher

Probing spectral features of quantum many-body systems with quantum simulators

Nature Communications Nature Research 16:1 (2025) 1403

Authors:

Jinzhao Sun, Lucia Vilchez-Estevez, Vlatko Vedral, Andrew T Boothroyd, MS Kim

Abstract:

The efficient probing of spectral features is important for characterising and understanding the structure and dynamics of quantum materials. In this work, we establish a framework for probing the excitation spectrum of quantum many-body systems with quantum simulators. Our approach effectively realises a spectral detector by processing the dynamics of observables with time intervals drawn from a defined probability distribution, which only requires native time evolution governed by the Hamiltonian without ancilla. The critical element of our method is the engineered emergence of frequency resonance such that the excitation spectrum can be probed. We show that the time complexity for transition energy estimation has a logarithmic dependence on simulation accuracy and how such observation can be guaranteed in certain many-body systems. We discuss the noise robustness of our spectroscopic method and show that the total running time maintains polynomial dependence on accuracy in the presence of device noise. We further numerically test the error dependence and the scalability of our method for lattice models. We present simulation results for the spectral features of typical quantum systems, either gapped or gapless, including quantum spins, fermions and bosons. We demonstrate how excitation spectra of spin-lattice models can be probed experimentally with IBM quantum devices.
More details from the publisher
Details from ORA
More details
More details

Dissipation-induced quantum homogenization for temporal information processing

Physical Review A American Physical Society (APS) 111:1 (2025) 012622

Authors:

Alexander Yosifov, Aditya Iyer, Vlatko Vedral
More details from the publisher

Quantum-information methods for quantum gravity laboratory-based tests

Reviews of Modern Physics American Physical Society (APS) 97:1 (2025) 015006

Authors:

Chiara Marletto, Vlatko Vedral
More details from the publisher
More details

Experimental demonstration of quantum causal inference via noninvasive measurements

(2024)

Authors:

Hongfeng Liu, Xiangjing Liu, Qian Chen, Yixian Qiu, Vlatko Vedral, Xinfang Nie, Oscar Dahlsten, Dawei Lu

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet