Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Temporal witnesses of non-classicality in a macroscopic biological system

Scientific Reports Nature Research 14:1 (2024) 20094

Authors:

Giuseppe Di Pietra, Vlatko Vedral, Chiara Marletto

Abstract:

Exciton transfer along a bio-polymer is essential for many biological processes, for instance, light harvesting in photosynthetic biosystems. Here we apply a new witness of non-classicality to this phenomenon, to conclude that, if an exciton can mediate the coherent quantum evolution of a photon, then the exciton is non-classical. We then propose a general qubit model for the quantum transfer of an exciton along a bio-polymer chain, also discussing the effects of environmental decoherence. The generality of our results makes them ideal candidates to design new tests of quantum features in complex bio-molecules.
More details from the publisher
Details from ORA
More details
More details

Comparing coherent and incoherent models for quantum homogenization

Physical Review A American Physical Society (APS) 110:1 (2024) 012464

Authors:

Anna Beever, Maria Violaris, Chiara Marletto, Vlatko Vedral
More details from the publisher

Planar Rotor in Matrix Mechanics and the Role of States in Quantum Physics

(2024)
More details from the publisher

The Bose-Marletto-Vedral proposal in different frames of reference and the quantum nature of gravity

(2024)

Authors:

Antonia Weber, Vlatko Vedral
More details from the publisher

Locality in the Schrödinger Picture of Quantum Mechanics

Physics MDPI 6:2 (2024) 793-800

Abstract:

This paper explains how the so-called Einstein locality is to be understood in the Schrödinger picture of quantum mechanics. This notion is fully compatible with the Bell non-locality exhibited by entangled states. Contrary to the belief that quantum mechanics is incomplete, it is, As a matter of fact, its overcompleteness, as exemplified by the different pictures of quantum physics, that points to the same underlying reality.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet