Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

X-ray spectroscopic studies of a solid-density germanium plasma created by a free electron laser

Applied Sciences MDPI 10:22 (2020) 8153

Abstract:

The generation of solid-density plasmas in a controlled manner using an X-ray free electron laser (XFEL) has opened up the possibility of diagnosing the atomic properties of hot, strongly coupled systems in novel ways. Previous work has concentrated on K-shell emission spectroscopy of low Z (<= 14) elements. Here, we extend these studies to the mid-Z(=32) element Germanium, where the XFEL creates copious L-shell holes, and the plasma conditions are interrogated by recording of the associated L-shell X-ray emission spectra. Given the desirability of generating as uniform a plasma as possible, we present here a study of the effects of the FEL photon energy on the temperatures and electron densities created, and their uniformity in the FEL beam propagation direction. We show that good uniformity can be achieved by tuning the photon energy of the XFEL such that it does not overlap significantly with L-shell to M-shell bound-bound transitions, and lies below the L-edges of the ions formed during the heating process. Reasonable agreement between experiment and simulations is found for the emitted X-ray spectra, demonstrating that for these higher Z elements, the selection of appropriate XFEL parameters is important for achieving uniformity in the plasma conditions.
More details from the publisher
Details from ORA
More details

Probing the Electronic Structure of Warm Dense Nickel via Resonant Inelastic X-Ray Scattering

Physical Review Letters American Physical Society (APS) 125:19 (2020) 195001

Authors:

OS Humphries, RS Marjoribanks, QY van den Berg, EC Galtier, MF Kasim, HJ Lee, AJF Miscampbell, B Nagler, R Royle, JS Wark, SM Vinko
More details from the publisher
More details
More details
Details from ArXiV

Mapping the electronic structure of warm dense nickel via resonant inelastic x-ray scattering

Physical Review Letters American Physical Society 125 (2020) 195001

Authors:

Oliver Humphries, RS Marjoribanks, Quincy Van Den Berg, EC Galtier, Muhammad Firmansyah, Alan Miscampbell, R Royle, Justin Wark, sam Vinko

Abstract:

The development of bright free-electron lasers (FEL) has revolutionised our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the valence electronic structure of soliddensity nickel, heated to temperatures of around 10 of eV on femtosecond timescales, can be probed by single-shot resonant inelastic x-ray scattering (RIXS) at the Linac Coherent Light Source FEL. The RIXS spectrum provides a wealth of information on the HED system that goes well beyond what can be extracted from x-ray absorption or emission spectroscopy alone, and is particularly well-suited to time-resolved studies of electronic-structure dynamics.
More details from the publisher
Details from ORA

Probing the electronic structure of warm dense nickel via resonant inelastic x-ray scattering

Physical Review Letters American Physical Society 125:19 (2020) 195001

Authors:

Os Humphries, Rs Marjoribanks, Qy Van Den Berg, Ec Galtier, Muhammad Kasim, Sam Vinko, Hj Lee, Ajf Miscampbell, B Nagler, R Royle, Justin Wark

Abstract:

The development of bright free-electron lasers (FEL) has revolutionized our ability to create and study matter in the high-energy-density (HED) regime. Current diagnostic techniques have been successful in yielding information on fundamental thermodynamic plasma properties, but provide only limited or indirect information on the detailed quantum structure of these systems, and on how it is affected by ionization dynamics. Here we show how the valence electronic structure of solid-density nickel, heated to temperatures of around 10 of eV on femtosecond timescales, can be probed by single-shot resonant inelastic x-ray scattering (RIXS) at the Linac Coherent Light Source FEL. The RIXS spectrum provides a wealth of information on the HED system that goes well beyond what can be extracted from x-ray absorption or emission spectroscopy alone, and is particularly well suited to time-resolved studies of electronic-structure dynamics.
More details from the publisher
Details from ORA

Measuring the oscillator strength of intercombination lines of helium-like V ions in a laser-produced-plasma

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier 256 (2020) 107326

Authors:

G Pérez-Callejo, Lc Jarrott, Da Liedahl, Mb Schneider, Js Wark, Steven Rose

Abstract:

We present results of measurements of the oscillator strength of intercombination lines of He-like Vanadium ions in high energy density (HED) laser-produced-plasmas and compare them with the simulations from commonly used codes and data from the NIST database. Whilst not yet sufficiently accurate to constrain different trusted atomic-physics models for the particular system studied, our results are in agreement with the available data within experimental error bars, yet differ from cruder approximations of the oscillator strength used in certain atomic-kinetics packages, suggesting that this general method could be further extended to be used as a measurement of the oscillator strength of additional atomic transitions under the extreme conditions that are achieved in HED experiments.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet