Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Investigating off-Hugoniot states using multi-layer ring-up targets

Scientific Reports Springer Nature 10:1 (2020) 13172

Authors:

D McGonegle, Pg Heighway, M Sliwa, Ca Bolme, Aj Comley, Le Dresselhaus-Marais, A Higginbotham, Aj Poole, Ee McBride, B Nagler, I Nam, Mh Seaberg, Ba Remington, Re Rudd, Ce Wehrenberg, Js Wark

Abstract:

Laser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer ‘ring-up’ target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot. We find that the efficiency of this approach compares favourably with the commonly used diamond sandwich technique and could be important for new facilities located at XFELs and synchrotrons which often have higher repetition rate, lower energy lasers which limits the achievable pressures that can be reached.
More details from the publisher
Details from ORA
More details
More details

Recovery of a high-pressure phase formed under laser-driven compression

Physical Review B American Physical Society 102:2 (2020) 24101

Authors:

Mg Gorman, David McGonegle, Sj Tracy, Sm Clarke, Ca Bolme, Ae Gleason, Sj Ali, S Hok, Cw Greeff, Patrick Heighway, K Hulpach, B Glam, E Galtier, Hj Lee, Js Wark, Jh Eggert, Jk Wicks, Rf Smith

Abstract:

The recovery of metastable structures formed at high pressure has been a long-standing goal in the field of condensed matter physics. While laser-driven compression has been used as a method to generate novel structures at high pressure, to date no high-pressure phases have been quenched to ambient conditions. Here we demonstrate, using in situ x-ray diffraction and recovery methods, the successful quench of a high-pressure phase which was formed under laser-driven shock compression. We show that tailoring the pressure release path from a shock-compressed state to eliminate sample spall, and therefore excess heating, increases the recovery yield of the high-pressure ω phase of zirconium from 0% to 48%. Our results have important implications for the quenchability of novel phases of matter demonstrated to occur at extreme pressures using nanosecond laser-driven compression.
More details from the publisher
Details from ORA
More details

Time-resolved XUV opacity measurements of warm-dense aluminium

Physical Review Letters American Physical Society 124 (2020) 225002

Authors:

Sam Vinko, V Vozda, J Andreasson, Orlando Ciricosta, P Hollebon, Muhammad Kasim, DS Rackstraw, Justin Wark

Abstract:

The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order of the Fermi energy. Plasma heating and opacity enhancement are observed on ultrafast timescales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm dense matter.
More details from the publisher
Details from ORA

Time-Resolved XUV Opacity Measurements of Warm Dense Aluminum.

Physical review letters 124:22 (2020) ARTN 225002

Authors:

Sm Vinko, V Vozda, J Andreasson, S Bajt, J Bielecki, T Burian, J Chalupsky, O Ciricosta, Mp Desjarlais, H Fleckenstein, J Hajdu, V Hajkova, P Hollebon, L Juha, Mf Kasim, Ee McBride, K Muehlig, Tr Preston, Ds Rackstraw, S Roling, S Toleikis, Js Wark, H Zacharias

Abstract:

The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order of the Fermi energy. Plasma heating and opacity enhancement are observed on ultrafast timescales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm dense matter.
More details from the publisher
More details
More details
Details from ArXiV

X-ray diffraction at the National Ignition Facility

Review of Scientific Instruments AIP Publishing 91:4 (2020) 043902

Authors:

Jr Rygg, Rf Smith, Ae Lazicki, Dg Braun, De Fratanduono, Rg Kraus, Jm McNaney, Dc Swift, Ce Wehrenberg, F Coppari, Mf Ahmed, Ma Barrios, Kjm Blobaum, Gw Collins, Al Cook, P Di Nicola, Eg Dzenitis, S Gonzales, Bf Heidl, M Hohenberger, A House, N Izumi, Dh Kalantar, Sf Khan, Tr Kohut, C Kumar, Nd Masters, Dn Polsin, Sp Regan, Ca Smith, Rm Vignes, Ma Wall, J Ward, Justin Wark, Tl Zobrist, A Arsenlis, Jh Eggert

Abstract:

We report details of an experimental platform implemented at the National Ignition Facility to obtain in situ powder diffraction data from solids dynamically compressed to extreme pressures. Thin samples are sandwiched between tamper layers and ramp compressed using a gradual increase in the drive-laser irradiance. Pressure history in the sample is determined using high-precision velocimetry measurements. Up to two independently timed pulses of x rays are produced at or near the time of peak pressure by laser illumination of thin metal foils. The quasi-monochromatic x-ray pulses have a mean wavelength selectable between 0.6 Å and 1.9 Å depending on the foil material. The diffracted signal is recorded on image plates with a typical 2θ x-ray scattering angle uncertainty of about 0.2° and resolution of about 1°. Analytic expressions are reported for systematic corrections to 2θ due to finite pinhole size and sample offset. A new variant of a nonlinear background subtraction algorithm is described, which has been used to observe diffraction lines at signal-to-background ratios as low as a few percent. Variations in system response over the detector area are compensated in order to obtain accurate line intensities; this system response calculation includes a new analytic approximation for image-plate sensitivity as a function of photon energy and incident angle. This experimental platform has been used up to 2 TPa (20 Mbar) to determine the crystal structure, measure the density, and evaluate the strain-induced texturing of a variety of compressed samples spanning periods 2–7 on the periodic table.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet