Recovery of metastable dense Bi synthesized by shock compression
Applied Physics Letters AIP Publishing 114:12 (2019) 120601
Abstract:
X-ray free electron laser (XFEL) sources have revolutionized our capability to study ultrafast material behavior. Using an XFEL, we revisit the structural dynamics of shock compressed bismuth, resolving the transition sequence on shock release in unprecedented details. Unlike previous studies that found the phase-transition sequence on shock release to largely adhere to the equilibrium phase diagram (i.e., Bi-V → Bi-III → Bi-II → Bi-I), our results clearly reveal previously unseen, non-equilibrium behavior at these conditions. On pressure release from the Bi-V phase at 5 GPa, the Bi-III phase is not formed but rather a new metastable form of Bi. This new phase transforms into the Bi-II phase which in turn transforms into a phase of Bi which is not observed on compression. We determine this phase to be isostructural with β-Sn and recover it to ambient pressure where it exists for 20 ns before transforming back to the Bi-I phase. The structural relationship between the tetragonal β-Sn phase and the Bi-II phase (from which it forms) is discussed. Our results show the effect that rapid compression rates can have on the phase selection in a transforming material and show great promise for recovering high-pressure polymorphs with novel material properties in the future.The use of geometric effects in diagnosing ion density in ICF-related dot spectroscopy experiments
High Energy Density Physics Elsevier 30 (2019) 45-51
Abstract:
We describe a method to calculate the ion density of High Energy Density (HED) cylindrical plasmas used in Dot Spectroscopy experiments. This method requires only spectroscopic measurements of the Heα region obtained from two views (Face-on and Side-on). We make use of the fact that the geometry of the plasma affects the observed flux of optically thick lines. The ion density can be derived from the aspect ratio (height-to-radius) of the cylinder and the optical depth of the Heα-y line (1s2p 3P1 → 1s 2 1S0). The aspect ratio and the optical depth of the y line are obtained from the spectra using ratios measured from the two directions of emission of the optically thick Heα-w line (1s2p 1P1 → 1s 2 1S0) and the ratio of the optically thick to thin lines. The method can be applied to mid-Z elements at ion densities of 1019 − 1020 cm−3 and temperatures of a the order of keV, which is a relevant regime for Inertial Confinement Fusion (ICF) experiments.Ultrafast laser-matter interaction with nanostructured targets
X-RAY LASERS AND COHERENT X-RAY SOURCES: DEVELOPMENT AND APPLICATIONS XIII 11111 (2019)
Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth
Scientific Reports Springer Nature Publishing Group 8 (2018) 16927
Abstract:
Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets.Phase transition lowering in dynamically compressed silicon
Nature Physics Springer Nature 15 (2018) 89-94