Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

X-ray diffraction at the National Ignition Facility

Review of Scientific Instruments AIP Publishing 91:4 (2020) 043902

Authors:

Jr Rygg, Rf Smith, Ae Lazicki, Dg Braun, De Fratanduono, Rg Kraus, Jm McNaney, Dc Swift, Ce Wehrenberg, F Coppari, Mf Ahmed, Ma Barrios, Kjm Blobaum, Gw Collins, Al Cook, P Di Nicola, Eg Dzenitis, S Gonzales, Bf Heidl, M Hohenberger, A House, N Izumi, Dh Kalantar, Sf Khan, Tr Kohut, C Kumar, Nd Masters, Dn Polsin, Sp Regan, Ca Smith, Rm Vignes, Ma Wall, J Ward, Justin Wark, Tl Zobrist, A Arsenlis, Jh Eggert

Abstract:

We report details of an experimental platform implemented at the National Ignition Facility to obtain in situ powder diffraction data from solids dynamically compressed to extreme pressures. Thin samples are sandwiched between tamper layers and ramp compressed using a gradual increase in the drive-laser irradiance. Pressure history in the sample is determined using high-precision velocimetry measurements. Up to two independently timed pulses of x rays are produced at or near the time of peak pressure by laser illumination of thin metal foils. The quasi-monochromatic x-ray pulses have a mean wavelength selectable between 0.6 Å and 1.9 Å depending on the foil material. The diffracted signal is recorded on image plates with a typical 2θ x-ray scattering angle uncertainty of about 0.2° and resolution of about 1°. Analytic expressions are reported for systematic corrections to 2θ due to finite pinhole size and sample offset. A new variant of a nonlinear background subtraction algorithm is described, which has been used to observe diffraction lines at signal-to-background ratios as low as a few percent. Variations in system response over the detector area are compensated in order to obtain accurate line intensities; this system response calculation includes a new analytic approximation for image-plate sensitivity as a function of photon energy and incident angle. This experimental platform has been used up to 2 TPa (20 Mbar) to determine the crystal structure, measure the density, and evaluate the strain-induced texturing of a variety of compressed samples spanning periods 2–7 on the periodic table.
More details from the publisher
Details from ORA
More details
More details

Time-resolved XUV Opacity Measurements of Warm-Dense Aluminium

(2020)

Authors:

SM Vinko, V Vozda, J Andreasson, S Bajt, J Bielecki, T Burian, J Chalupsky, O Ciricosta, MP Desjarlais, H Fleckenstein, J Hajdu, V Hajkova, P Hollebon, L Juha, MF Kasim, EE McBride, K Muehlig, TR Preston, DS Rackstraw, S Roling, S Toleikis, JS Wark, H Zacharias
More details from the publisher

Mapping the Electronic Structure of Warm Dense Nickel via Resonant Inelastic X-ray Scattering

(2020)

Authors:

OS Humphries, RS Marjoribanks, Q van den Berg, EC Galtier, MF Kasim, HJ Lee, AJF Miscampbell, B Nagler, R Royle, JS Wark, SM Vinko
More details from the publisher

Non-isentropic release of a shocked solid

Physical Review Letters American Physical Society 123:24 (2019) 245501

Authors:

PG Heighway, M Sliwa, D McGonegle, C Wehrenberg, CA Bolme, J Eggert, A Higginbotham, A Lazicki, HJ Lee, B Nagler, H-S Park, RE Rudd, RF Smith, MJ Suggit, D Swift, F Tavella, BA Remington, Justin Wark

Abstract:

We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.
More details from the publisher
Details from ORA
More details
More details

Ab initio simulations and measurements of the free-free opacity in aluminum

Physical Review E American Physical Society 100:4 (2019) 043207

Authors:

Patrick Hollebon, O Ciricosta, MP Desjarlais, C Cacho, C Spindloe, E Springate, ICE Turcu, Justin Wark, Sam M Vinko

Abstract:

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet