Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Ab initio simulations and measurements of the free-free opacity in aluminum

Physical Review E American Physical Society 100:4 (2019) 043207

Authors:

Patrick Hollebon, O Ciricosta, MP Desjarlais, C Cacho, C Spindloe, E Springate, ICE Turcu, Justin Wark, Sam M Vinko

Abstract:

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
More details from the publisher
Details from ORA

Molecular dynamics simulations of grain interactions in shock-compressed highly textured columnar nanocrystals

Physical Review Materials American Physical Society 3:8 (2019) 083602

Authors:

Patrick Heighway, F McGonegle, N Park, A Higginbotham, Justin Wark

Abstract:

While experimental and computational studies abound demonstrating the diverse range of phenomena caused by grain interactions under quasistatic loading conditions, far less attention has been given to these interactions under the comparatively dramatic conditions of shock compression. The consideration of grain interactions is essential within the context of contemporary shock-compression experiments that exploit the distinctive x-ray diffraction patterns of highly textured (and therefore strongly anisotropic) targets in order to interrogate local structural evolution. We present here a study of grain interaction effects in shock-compressed, body-centered cubic tantalum nanocrystals characterized by a columnar geometry and a strong fiber texture using large-scale molecular dynamics simulations. Our study reveals that contiguous grains deform cooperatively in directions perpendicular to the shock, driven by the gigapascal-scale stress gradients induced over their boundaries by the uniaxial compression, and in so doing are able to reach a state of reduced transverse shear stress. We compare the extent of this relaxation for two different columnar geometries (distinguished by their square or hexagonal cross-sections), and quantify the attendant change in the transverse elastic strains. We further show that cooperative deformation is able to replace ordinary plastic deformation mechanisms at lower shock pressures, and, under certain conditions, activate new mechanisms at higher pressures.
More details from the publisher
Details from ORA
More details

Identification of phase transitions and metastability in dynamically compressed antimony using ultrafast x-ray diffraction

Physical Review Letters American Physical Society 122:25 (2019) 255704

Authors:

AL Coleman, R Briggs, RS McWilliams, David McGonegle, CA Bolme, AE Gleason, DE Fratanduono, RF Smith, E Galtier, HJ Lee, B Nagler, E Granados, GW Collins, JH Eggert, Justin Wark, MI McMahon

Abstract:

Ultrafast x-ray diffraction at the LCLS x-ray free electron laser has been used to resolve the structural behavior of antimony under shock compression to 59 GPa. Antimony is seen to transform to the incommensurate, host-guest phase Sb-II at ∼11 GPa, which forms on nanosecond timescales with ordered guest-atom chains. The high-pressure bcc phase Sb-III is observed above ∼15 GPa, some 8 GPa lower than in static compression studies, and mixed Sb-III/liquid diffraction are obtained between 38 and 59 GPa. An additional phase which does not exist under static compression, Sb-I', is also observed between 8 and 12 GPa, beyond the normal stability field of Sb-I, and resembles Sb-I with a resolved Peierls distortion. The incommensurate Sb-II high-pressure phase can be recovered metastably on release to ambient pressure, where it is stable for more than 10 ns.
More details from the publisher
Details from ORA
More details
More details

Laboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnostics

Physics of Plasmas AIP Publishing 26:6 (2019) 063302

Authors:

Gabriel Perez-Callejo, LC Jarrott, DA Liedahl, EV Marley, GE Kemp, RF Heeter, JA Emig, ME Foord, K Widmann, J Jaquez, H Huang, SJ Rose, Justin Wark, MB Schneider

Abstract:

Understanding the effects of radiative transfer in High Energy Density Physics experiments is critical for the characterization of the thermodynamic properties of highly ionized matter, in particular in Inertial Confinement Fusion (ICF). We report on non-Local Thermodynamic Equilibrium experiments on cylindrical targets carried out at the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY, which aim to characterize these effects. In these experiments, a 50/50 mixture of iron and vanadium, with a thickness of 2000 Å and a diameter of 250 μm, is contained within a beryllium tamper, with a thickness of 10 μm and a diameter of 1000 μm. Each side of the beryllium tamper is then irradiated using 18 of the 60 Omega beams with an intensity of roughly 3 × 1014 W cm−2 per side, over a duration of 3 ns. Spectroscopic measurements show that a plasma temperature on the order of 2 keV was produced. Imaging data show that the plasma remains cylindrical, with geometrical aspect ratios (quotient between the height and the radius of the cylinder) from 0.4 to 2.0. The temperatures in this experiment were kept sufficiently low (∼1–2 keV) so that the optically thin Li-like satellite emission could be used for temperature diagnosis. This allowed for the characterization of optical-depth-dependent geometric effects in the vanadium line emission. Simulations present good agreement with the data, which allows this study to benchmark these effects in order to take them into account to deduce temperature and density in future ICF experiments, such as those performed at the National Ignition Facility.
More details from the publisher
Details from ORA
More details

Radiation transfer in cylindrical, toroidal and hemi-ellipsoidal plasmas

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier 235 (2019) 24-30

Authors:

G Pérez-Callejo, JS Wark, Steven Rose

Abstract:

We present solutions of the radiative transfer equation for cylinders, hollow hemi-ellipsoidal shells and tori for a uniform plasma of fixed geometry. The radiative transfer equation is explicitly solved for two directions of emission, parallel and perpendicular to the axis of symmetry. The ratio between the fluxes in these two directions is also calculated and its use in measuring the frequency resolved opacity of the plasma is discussed. We find that the optimal geometry to use this ratio as an opacity measurement is a planar geometry.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet