Comments on A new theory for X-ray diffraction
Acta Crystallographica Section A: Foundations and Advances International Union of Crystallography 74:5 (2018) A74
Abstract:
In an article entitled A new theory for X-ray diffraction [Fewster (2014). Acta Cryst. A70, 257–282], hereafter referred to as NTXRD, it is claimed that when X-rays are scattered from a small crystallite, whatever its size and shape, the diffraction pattern will contain enhanced scattering at angles of exactly 2B, whatever the orientation of the crystal. It is claimed that in this way scattering from a powder, with randomly oriented crystals, gives rise to Bragg scattering even if the Bragg condition is never satisfied by an individual crystallite. The claims of the theory put forward in NTXRD are examined and they are found to be in error. Whilst for a certain restricted set of shapes of crystals it is possible to obtain some diffraction close to (but not exactly at) the Bragg angle as the crystallite is oriented away from the Bragg condition, this is generally not the case. Furthermore, contrary to the claims made within NTXRD, the recognition of the origin of the type of effects described is not new, and has been known since the earliest days of X-ray diffraction.Observed proton beam induced disruption of a tungsten powder sample at CERN
Physical Review Accelerators and Beams American Physical Society (APS) 21:7 (2018) 073002
Femtosecond x-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum
Physical Review Letters American Physical Society 120:26 (2018) 265502
Abstract:
We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37–253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.Ab-initio simulations and measurements of the free-free opacity in Aluminum
(2018)
Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS
Applied Physics Letters AIP Publishing 112 (2018) 221907