Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Comments on A new theory for X-ray diffraction

Acta Crystallographica Section A: Foundations and Advances International Union of Crystallography 74:5 (2018) A74

Authors:

J Fraser, Justin Wark

Abstract:

In an article entitled A new theory for X-ray diffraction [Fewster (2014). Acta Cryst. A70, 257–282], hereafter referred to as NTXRD, it is claimed that when X-rays are scattered from a small crystallite, whatever its size and shape, the diffraction pattern will contain enhanced scattering at angles of exactly 2B, whatever the orientation of the crystal. It is claimed that in this way scattering from a powder, with randomly oriented crystals, gives rise to Bragg scattering even if the Bragg condition is never satisfied by an individual crystallite. The claims of the theory put forward in NTXRD are examined and they are found to be in error. Whilst for a certain restricted set of shapes of crystals it is possible to obtain some diffraction close to (but not exactly at) the Bragg angle as the crystallite is oriented away from the Bragg condition, this is generally not the case. Furthermore, contrary to the claims made within NTXRD, the recognition of the origin of the type of effects described is not new, and has been known since the earliest days of X-ray diffraction.
More details from the publisher
Details from ORA
More details
More details

Observed proton beam induced disruption of a tungsten powder sample at CERN

Physical Review Accelerators and Beams American Physical Society (APS) 21:7 (2018) 073002

Authors:

T Davenne, P Loveridge, R Bingham, J Wark, JJ Back, O Caretta, C Densham, J O’Dell, D Wilcox, M Fitton
More details from the publisher

Femtosecond x-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum

Physical Review Letters American Physical Society 120:26 (2018) 265502

Authors:

M Sliwa, D McGonegle, C Wehrenberg, CA Bolme, PG Heighway, A Higginbotham, A Lazicki, HJ Lee, B Nagler, HS Park, RE Rudd, MJ Suggit, D Swift, F Tavella, L Zepeda-Ruiz, BA Remington, Justin Wark

Abstract:

We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37–253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.
More details from the publisher
Details from ORA
More details
More details

Ab-initio simulations and measurements of the free-free opacity in Aluminum

(2018)

Authors:

P Hollebon, O Ciricosta, MP Desjarlais, C Cacho, C Spindloe, E Springate, ICE Turcu, JS Wark, SM Vinko
More details from the publisher

Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS

Applied Physics Letters AIP Publishing 112 (2018) 221907

Authors:

F Seiboth, LB Fletcher, David McGonegle, S Anzellini, LE Dresselhaus-Cooper, M Frost, E Galtier, S Goede, M Harmand, HJ Lee, A Levitan, K Miyanishi, B Nagler, I Nam, N Ozaki, M Rodel, A Schropp, C Spindloe, P Sun, Justin Wark, J Hastings, SH Glenzer, EE McBride

Abstract:

In this work, we demonstrate simultaneous phase-contrast imaging (PCI) and X-ray diffraction from shock compressed matter at the Matter in Extreme Conditions (MEC) endstation, Linac Coherent Light Source (LCLS). We utilize the chromaticity from compound refractive X-ray lenses to focus the 24.6 keV 3rd order undulator harmonic of the LCLS to a spot size of 5 μm on target to perform X-ray diffraction. Simultaneous PCI from the 8.2 keV fundamental X-ray beam is used to visualize and measure the transient properties of the shock wave over a 500 μm field of view. Furthermore, we demonstrate the ability to extend the reciprocal space by 5˚A−1, relative to the fundamental X-ray energy, by utilizing X-ray diffraction from the 3rd harmonic of the LCLS.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet