Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The EnVision Venus orbiter mission, proposed to ESA

Colin Wilson

Visitor

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
Colin.Wilson@physics.ox.ac.uk
Telephone: 01865 (2)72086
Atmospheric Physics Clarendon Laboratory, room 301
  • About
  • Publications

The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

2017 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE) (2017) 249-255

Authors:

C Bettanini, F Esposito, S Debei, C Molfese, G Colombatti, A Aboudan, JR Brucato, F Cortecchia, G Di Achille, GP Guizzo, E Friso, F Ferri, L Marty, V Mennella, R Molinaro, P Schipani, S Silvestro, R Mugnuolo, S Pirrotta, E Marchetti, A-M Harri, F Montmessin, C Wilson, I Arruego Rodriguez, S Abbaki, V Apestigue, G Bellucci, J-J Berthelier, SB Calcutt, F Forget, M Genzer, P Gilbert, H Haukka, JJ Jimenez, S Jimenez, J-L Josset, O Karatekin, G Landis, R Lorenz, J Martinez, D Moehlmann, D Moirin, E Palomba, M Patel, J-P Pommereau, CI Popa, S Rafkin, P Rannou, NO Renno, W Schmidt, F Simoes, A Spiga, F Valero, L Vazquez, F Vivat, O Witasse, IEEE, IDREAMS Team
More details from the publisher
Details from ORA
More details
More details

The thermal structure of the Venus atmosphere: intercomparison of Venus express and ground based observations of vertical temperature and density profiles

Icarus Elsevier 294 (2017) 124-155

Authors:

SS Limaye, S Lebonnois, A Mahieux, M Pätzold, S Bougher, S Bruinsma, S Chamberlain, RT Clancy, J-C Gérard, G Gilli, D Grassi, R Haus, M Herrmann, T Imamura, E Kohler, P Krause, A Migliorini, F Montmessin, C Pere, M Persson, A Piccialli, M Rengel, A Rodin, B Sandor, M Sornig, H Svedhem, S Tellmann, P Tanga, AC Vandaele, T Widemann, Colin Wilson, I Müller-Wodarg, L Zasova

Abstract:

The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km–180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components.

The differences between the VEx temperature profiles and the VIRA below 0.1 mbar/95 km are small. There is, however, a clear discrepancy at high latitudes in the 10-30 mbar (70-80 km) range. The VEx observations will also allow the improvement of the empirical models (VTS3 by Hedin et al., 1983 and VIRA by Keating et al., 1985) above 0.03 mbar/100 km, in particular the 100-150 km region where a sufficient observational coverage was previously missing. The next steps in order to define the updated VIRA temperature structure up to 150 km altitude are (1) define the grid on which this database may be provided, (2) fill what is possible with the results of the data intercomparison, and (3) fill the observational gaps. An interpolation between the datasets may be performed by using available General Circulation Models as guidelines.

An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude and at all local solar times for a complete description of the atmospheric thermal structure, in particular on the dayside above 100 km. New in-situ observations in the atmosphere below 40 km are missing, an altitude region that cannot be accessed by occultation experiments. All these questions need to be addressed by future missions.

More details from the publisher
Details from ORA
More details
More details

The ExoMars DREAMS scientific data archive

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 9913 (2016) 99134f-99134f-7

Authors:

P Schipani, L Marty, M Mannetta, F Esposito, C Molfese, A Aboudan, V Apestigue-Palacio, I Arruego-Rodíguez, C Bettanini, G Colombatti, S Debei, M Genzer, A-M Harri, E Marchetti, F Montmessin, R Mugnuolo, S Pirrotta, C Wilson
More details from the publisher

Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment

Planetary and Space Science 113-114 (2015) 33-48

Authors:

MW Airey, TA Mather, DM Pyle, LS Glaze, RC Ghail, CF Wilson

Abstract:

Abstract We investigate the conditions that will promote explosive volcanic activity on Venus. Conduit processes were simulated using a steady-state, isothermal, homogeneous flow model in tandem with a degassing model. The response of exit pressure, exit velocity, and degree of volatile exsolution was explored over a range of volatile concentrations (H2O and CO2), magma temperatures, vent altitudes, and conduit geometries relevant to the Venusian environment. We find that the addition of CO2 to an H2O-driven eruption increases the final pressure, velocity, and volume fraction gas. Increasing vent elevation leads to a greater degree of magma fragmentation, due to the decrease in the final pressure at the vent, resulting in a greater likelihood of explosive activity. Increasing the magmatic temperature generates higher final pressures, greater velocities, and lower final volume fraction gas values with a correspondingly lower chance of explosive volcanism. Cross-sectionally smaller, and/or deeper, conduits were more conducive to explosive activity. Model runs show that for an explosive eruption to occur at Scathach Fluctus, at Venus' mean planetary radius (MPR), 4.5% H2O or 3% H2O with 3% CO2 (from a 25 m radius conduit) would be required to initiate fragmentation; at Ma'at Mons (~9 km above MPR) only ~2% H2O is required. A buoyant plume model was used to investigate plume behaviour. It was found that it was not possible to achieve a buoyant column from a 25 m radius conduit at Scathach Fluctus, but a buoyant column reaching up to ~20 km above the vent could be generated at Ma'at Mons with an H2O concentration of 4.7% (at 1300 K) or a mixed volatile concentration of 3% H2O with 3% CO2 (at 1200 K). We also estimate the flux of volcanic gases to the lower atmosphere of Venus, should explosive volcanism occur. Model results suggest explosive activity at Scathach Fluctus would result in an H2O flux of ~107 kg s-1. Were Scathach Fluctus emplaced in a single event, our model suggests that it may have been emplaced in a period of ~15 days, supplying 1-2×104 Mt H2O to the atmosphere locally. An eruption of this scale might increase local atmospheric H2O abundance by several ppm over an area large enough to be detectable by near-infrared nightside sounding using the 1.18 μm spectral window such as that carried out by the Venus Express/VIRTIS spectrometer. Further interrogation of the VIRTIS dataset is recommended to search for ongoing volcanism on Venus.
More details from the publisher

The CO2 continuum absorption in the 1.10- and 1.18-μm windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express

Planetary and Space Science 113-114 (2015) 66-77

Authors:

A Fedorova, B Bézard, JL Bertaux, O Korablev, C Wilson

Abstract:

Abstract One of the difficulties in modeling Venus' nightside atmospheric windows is the need to apply CO2 continuum opacity due to collision-induced CO2 bands and/or extreme far wings of strong allowed CO2 bands. Characterizing the CO2 continuum absorption at near-IR wavelengths as well as searching for a possible vertical gradient of minor species near the surface require observations over different surface elevations. The largest change in altitude occurs during a passage above Maxwell Montes at high northern latitudes. In 2011, 2012 and 2013 the SPICAV instrument aboard the Venus Express satellite performed three sets of observations over Maxwell Montes with variation of surface altitude from -2 to 9 km in the 1.10, 1.18 and 1.28-μm windows. The retrieved CO2 continuum absorption for the 1.10- and 1.18-μm windows varies from 0.29 to 0.66×10-9 cm-1 amagat-2 and from 0.30 to 0.78×10-9 cm-1 amagat-2, respectively, depending on the assumed input parameters. The retrieval is sensitive to possible variations of the surface emissivity. Our values fall between the results of Bézard et al., (2009, 2011) based on VIRTIS-M observations and laboratory measurements by Snels et al. (2014). We can also conclude that the continuum absorption at 1.28 μm can be constrained below 2.0×10-9 cm-1 amagat-2. Based on the 1.18 μm window the constant H2O mixing ratio varying from 25.7+1.4-1.2 ppm to 29.4+1.6-1.4 ppm has been retrieved assuming the surface emissivity of 0.95 and 0.6, respectively. No firm conclusion from SPICAV data about the vertical gradient of water vapor content at 10-20 km altitude could be drawn because of low signal-to-noise ratio and uncertainties in the surface emissivity.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet