Characterizing atmospheric waves on Venus, Earth, and Mars
Eos 93:23 (2012) 220
Abstract:
Atmospheric Waves Workshop; Noordwijk, Netherlands, 9-10 November 2011 Experts in observations and modeling of atmospheric waves from the Earth and planetary atmospheric science communities came together at a November 2011 workshop held at the European Space Agency's (ESA) European Space Research and Technology Centre (ESTEC) site in the Netherlands to discuss the nature of waves observed in Venus's atmosphere and their comparison to those on Earth and Mars. ESA's Venus Express (VEx) satellite and ground-based observers find atmospheric waves at many scales. Migrating solar tides and other planetary-scale waves are observed in cloud-tracking wind vectors and temperature fields. Mesoscale gravity waves (GWs) can also be seen at a variety of levels from the cloud base up to the thermosphere, evident in imagery and in vertical profiles of temperature, density, and aerosol abundance. This workshop focused particularly on GWs, as their role in the atmospheric circulation is still poorly understood. © 2012 American Geophysical Union. All Rights Reserved.The 2010 European Venus Explorer (EVE) mission proposal
Experimental Astronomy 33:2-3 (2012) 305-335
Abstract:
The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an 'M-class' mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55 km, where temperatures and pressures are benign (~25°C and ~0. 5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond. © 2011 Springer Science+Business Media B.V.Models of the global cloud structure on Venus derived from Venus Express observations
Icarus 217:2 (2012) 542-560
Abstract:
Spatially-resolved near-infrared spectra from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express have been used to derive improved models of the vertical structure and global distribution of cloud properties in the southern hemisphere of Venus. VIRTIS achieved the first systematic, global mapping of Venus at wavelengths within transparency windows in the 1.6-2.6. μm range, which are sensitive on the nightside to absorption by the lower and middle cloud layers of thermally-emitted radiation from the hot lower atmosphere (Taylor, F.W., Crisp, D., Bézard, B. [1997]. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 325-351). The cloud model used to interpret the spectra is based on previous work by Pollack et al. (Pollack, J., Dalton, J., Grinspoon, D., Wattson, R., Freedman, R., Crisp, D., Allen, D., Bézard, B., de Bergh, C., Giver, L. [1993]. Icarus 103, 1-42), Grinspoon et al. (Grinspoon, D.H., Pollack, J.B., Sitton, B.R., Carlson, R.W., Kamp, L.W., Baines, K.H., Encrenaz, T., Taylor, F.W. [1993]. Planet. Space Sci. 41, 515-542) and Crisp (Crisp, D. [1986]. Icarus 67, 484-514), and assumes a composition for the cloud particles of sulfuric acid and water, with acid concentration as a free parameter to be determined. Other retrieved parameters are the average size of the particles and the altitude of the cloud base in the model. Latitudinal variation in the atmospheric temperature structure was incorporated using data from the Venus Radio Science experiment (VeRa). Values are estimated initially using wavelength pairs selected for their unique sensitivity to each parameter, and then validated by comparing measured to calculated spectra over the entire wavelength range, the latter generated using the NEMESIS radiative transfer and retrieval code (Irwin, P.G.J., Teanby, N.A., de Kok, R., Fletcher, L.N., Howett, C.J.A., Tsang, C.C.C., Wilson, C.F., Calcutt, S.B., Nixon, C.A., Parrish, P.D. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150). The sulfuric acid concentration in the cloud particles is found to be higher in regions of optically thick cloud. The cloud base altitude shows a dependence on latitude, reaching a maximum height near -50°. The increased average particle size near the pole found by Wilson et al. (Wilson, C.F., Guerlet, S., Irwin, P.G.J., Tsang, C.C.C., Taylor, F.W., Carlson, R.W., Drossart, P., Piccioni, G. [2008]. J. Geophys. Res. (Planets) 113, E12) and the finding of spatially variable water vapor abundance at35-40. km altitude first reported by Tsang et al. (Tsang, C.C.C., Wilson, C.F., Barstow, J.K., Irwin, P.G.J., Taylor, F.W., McGouldrick, K., Piccioni, G., Drossart, P., Svedhem, H. [2010]. Geophys. Res. Lett. 37, L02202) are both confirmed. The implications of these improved descriptions of cloud structure and variability for the chemistry, meteorology, and radiative energy balance on Venus are briefly discussed. © 2011 Elsevier Inc.Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations
Icarus 217:2 (2012) 629-639
Abstract:
Recent retrievals of zonal thermal winds obtained in a cyclostrophic regime on Venus are generally consistent with cloud tracking measurements at mid-latitudes, but become unphysical in polar regions where the values obtained above the clouds are often less than or close to zero. Using a global atmospheric model, we show that the main source of errors that appear in the polar regions when retrieving the zonal thermal winds is most likely due to uncertainties in the zonal wind intensity in the choice of the lower boundary condition.Here we suggest a new and robust method to better estimate the lower boundary condition for high latitudes, thereby improving the retrieved zonal thermal winds throughout the high latitudes middle atmosphere. This new method is applied to temperature fields derived from Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data on board the Venus Express spacecraft. We obtain a zonal thermal wind field that is in better agreement with other, more direct methods based on either retrieving the zonal winds from cloud tracking or from direct measurements of the meridional slope of pressure surfaces. © 2011 Elsevier Inc.Models of the global cloud structure on Venus derived from Venus Express observations
Icarus Elsevier 217:2 (2012) 542-560