Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The EnVision Venus orbiter mission, proposed to ESA

Colin Wilson

Visitor

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
Colin.Wilson@physics.ox.ac.uk
Telephone: 01865 (2)72086
Atmospheric Physics Clarendon Laboratory, room 301
  • About
  • Publications

EnVision: understanding why our most Earth-like neighbour is so different

Authors:

Richard Ghail, Colin Wilson, Thomas Widemann, Lorenzo Bruzzone, Caroline Dumoulin, Jörn Helbert, Robbie Herrick, Emmanuel Marcq, Philippa Mason, Pascal Rosenblatt, Ann Carine Vandaele, Louis-Jerome Burtz

Abstract:

This document is the EnVision Venus orbiter proposal, submitted in October 2016 in response to ESA's M5 call for Medium-size missions for its Science Programme, for launch in 2029. Why are the terrestrial planets so different? Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. Its original atmosphere was probably similar to that of early Earth, with abundant water that would have been liquid under the young sun's fainter output. Even today, with its global cloud cover, the surface of Venus receives less solar energy than does Earth, so why did a moderate climate ensue here but a catastrophic runaway greenhouse on Venus? How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? Following the primarily atmospheric focus of Venus Express, we propose a new Venus orbiter named EnVision, to focus on Venus' geology and geochemical cycles, seeking evidence for present and past activity. The payload comprises a state-of-the-art S-band radar which will be able to return imagery at spatial resolutions of 1 - 30 m, and capable of measuring cm-scale deformation; this is complemented by subsurface radar, IR and UV spectrometers to map volcanic gases, and by geodetic investigations.
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet