Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The EnVision Venus orbiter mission, proposed to ESA

Colin Wilson

Visitor

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
Colin.Wilson@physics.ox.ac.uk
Telephone: 01865 (2)72086
Atmospheric Physics Clarendon Laboratory, room 301
  • About
  • Publications

Simulating weathering of basalt on Mars and Earth by thermal cycling

Geophysical Research Letters 37:18 (2010)

Authors:

H Viles, B Ehlmann, CF Wilson, T Cebula, M Page, M Bourke

Abstract:

Physical weathering induced by heating and cooling may cause rock breakdown on Mars and Earth. We report results from parallel weathering simulations on basalt blocks exposed to diurnal cycles representing Mars-like (two simulation runs from -55 to +20 oC and -75 to +10 oC, 1-100% relative humidity, 4-8 mbar pressure, CO2 atmosphere) and hot arid Earth (23-72o C, 30-100% relative humidity) conditions. Under Earth conditions, thermally pre-stressed blocks showed measurable strength declines, whilst salt pre-treated blocks showed strength gains. Under Mars-like conditions, pre-stressed blocks recorded greater or similar strength declines and salt pre-treated blocks showed more muted strength declines than under Earth conditions. The results imply that on Earth and Mars diurnal cycling of temperature alone can cause deterioration of basalt with a pre-existing stress history. The type of stress history is important, with salt pre-treatment affecting the response of thermally pre-stressed blocks under both Earth and Mars conditions. Copyright © 2010 by the American Geophysical Union.
More details from the publisher
More details

Correlations between cloud thickness and sub-cloud water abundance on Venus

GEOPHYSICAL RESEARCH LETTERS 37 (2010) ARTN L02202

Authors:

Constantine CC Tsang, Colin F Wilson, Joanna K Barstow, Patrick GJ Irwin, Fredric W Taylor, Kevin McGouldrick, Giuseppe Piccioni, Pierre Drossart, Hakan Svedhem
More details from the publisher

Determining vertical cloud structure on Venus using near-infrared spectroscopy

European Planetary Science Congress 2009 (2009) 249-249

Authors:

JK Barstow, FW Taylor, CCC Tsang, CF Wilson, PGJ Irwin, P Drossart, G Piccioni

Minor Species in the Deep Atmosphere of Venus: Dynamical Tracers seen by Venus Express

AAS/Division for Planetary Sciences Meeting Abstracts #41 41 (2009) #60.07-#60.07

Authors:

C Tsang, CF Wilson, JK Barstow, B Bezard, PGJ Irwin, FW Taylor, G Piccioni, P Drossart, K McGouldrick, SB Calcutt

European Venus Explorer: An in-situ mission to Venus using a balloon platform

Advances in Space Research 44:1 (2009) 106-115

Authors:

E Chassefière, O Korablev, T Imamura, KH Baines, CF Wilson, DV Titov, KL Aplin, T Balint, JE Blamont, CG Cochrane, C Ferencz, F Ferri, M Gerasimov, JJ Leitner, J Lopez-Moreno, B Marty, M Martynov, SV Pogrebenko, A Rodin, JA Whiteway, LV Zasova

Abstract:

Planetary balloons have a long history already. A small super-pressure balloon was flown in the atmosphere of Venus in the eighties by the Russian-French VEGA mission. For this mission, CNES developed and fully tested a 9 m diameter super-pressure balloon, but finally replaced it by a smaller one due to mass constraints (when it was decided to send Vega to Halley's Comet). Furthermore, several kinds of balloons have been proposed for planetary exploration [Blamont, J., in: Maran, S.P. (Ed.), The Astronomy and Astrophysics Encyclopedia. Cambridge University Press, p. 494, 1991]. A Mars balloon has been studied for the Mars-94 Russian-French mission, which was finally cancelled. Mars and Venus balloons have also been studied and ground tested at JPL, and a low atmosphere Venus balloon is presently under development at JAXA (the Japanese Space Agency). Balloons have been identified as a key element in an ongoing Flagship class mission study at NASA, with an assumed launch date between 2020 and 2025. Recently, it was proposed by a group of scientists, under European leadership, to use a balloon to characterize - by in-situ measurements - the evolution, composition and dynamics of the Venus atmosphere. This balloon is part of a mission called EVE (European Venus Explorer), which has been proposed in response to the ESA AO for the first slice of the Cosmic Vision program by a wide international consortium including Europe, Russia, Japan and USA. The EVE architecture consists of one balloon platform floating at an altitude of 50-60 km, one short lived probe provided by Russia, and an orbiter with a polar orbit to relay data from the balloon and probe, and to perform remote sensing science observations. The balloon type preferred for scientific goals is one, which would oscillate in altitude through the cloud deck. To achieve this flight profile, the balloon envelope would contain a phase change fluid. While this proposal was not selected for the first slice of Cosmic Vision missions, it was ranked first among the remaining concepts within the field of solar system science. © 2009 COSPAR.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet