A wind tunnel for the calibration of Mars wind sensors
Planetary and Space Science 56:11 (2008) 1532-1541
Abstract:
A major limitation in the development of wind sensors for use on Mars is the lack of suitable testing and calibration facilities. A low-density wind tunnel has been developed at Oxford University for calibration of wind sensors for Mars landers, capable of providing stable or dynamically varying winds, of air or carbon dioxide, at Martian pressures (5-10 mbar) and speeds (0.5-30 m/s), and temperatures of 200-300 K. The flow field in the test section was calculated using analytical and computational modelling techniques, and validated experimentally using a pitot probe. This facility's stability and accuracy offer significant advantages with respect to previous calibration facilities. © 2008 Elsevier Ltd. All rights reserved.Variable winds on Venus mapped in three dimensions
Geophysical Research Letters 35:13 (2008)
Abstract:
We present zonal and meridional wind measurements at three altitude levels within the cloud layers of Venus from cloud tracking using images taken with the VIRTIS instrument on board Venus Express. At low latitudes, zonal winds in the Southern hemisphere are nearly constant with latitude with westward velocities of 105 ms-1 at cloud-tops (altitude ∼ 66 km) and 60-70 ms-1 at the cloud-base (altitude ∼ 47 km). At high latitudes, zonal wind speeds decrease linearly with latitude with no detectable vertical wind shear (values lower than 15 ms-1), indicating the possibility of a vertically coherent vortex structure. Meridional winds at the cloud-tops are poleward with peak speed of 10 ms-1 at 55° S but below the cloud tops and averaged over the South hemisphere are found to be smaller than 5 ms-1. We also, report the detection at subpolar latitudes of wind variability due to the solar tide. Copyright 2008 by the American Geophysical Union.The NEMESIS planetary atmosphere radiative transfer and retrieval tool
Journal of Quantitative Spectroscopy and Radiative Transfer 109:6 (2008) 1136-1150
Abstract:
With the exception of in situ atmospheric probes, the most useful way to study the atmospheres of other planets is to observe their electromagnetic spectra through remote observations, either from ground-based telescopes or from spacecraft. Atmospheric properties most consistent with these observed spectra are then derived with retrieval models. All retrieval models attempt to extract the maximum amount of atmospheric information from finite sets of data, but while the problem to be solved is fundamentally the same for any planetary atmosphere, until now all such models have been assembled ad hoc to address data from individual missions. In this paper, we describe a new general-purpose retrieval model, Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS), which was originally developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft. NEMESIS has been constructed to be generally applicable to any planetary atmosphere and can be applied from the visible/near-infrared right out to microwave wavelengths, modelling both reflected sunlight and thermal emission in either scattering or non-scattering conditions. NEMESIS has now been successfully applied to the analysis of data from many planetary missions and also ground-based observations. © 2007 Elsevier Ltd. All rights reserved.A correlated-k model of radiative transfer in the near-infrared windows of Venus
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 109:6 (2008) 1118-1135
Evidence for anomalous cloud particles at the poles of Venus
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 113 (2008) ARTN E00B13